
ExactPositioning of Data Appr oach to
Memory Mapped PersistentStores:

Design, Analysis and Modelling

by

Anil K. Goel

A thesis

presentedto the University of Waterloo

in ful�lment of the

thesis requirement for the degreeof

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada,1996

c
�

Anil K. Goel 1996

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesisby photocopy-

ing or by other means,in total or in part, at the requestof other institutions or individuals

for the purpose of scholarly research.

iii

The University of Waterloo requiresthe signaturesof all personsusing or photocopy-

ing this thesis. Pleasesign below, and give addressand date.

v

Abstract

One of the primary functions of computers is to store information, i.e., to deal with long

lived or persistentdata. Programmers working with persistent data structuresare faced

with the problem that there are two, mostly incompatible, views of structured data,

namely data in primary and secondary storage. Traditionally , these two views of data

have been dealt with independently by researchers in the programming language and

databasecommunities.

Signi�cant research has occurred over the last decade on ef�cient and easy-to-use

methods for manipulating persistent data structures in a fashion that makes the sec-

ondary storagetransparent to the programmer. Merging primary and secondarystorage

in this manner produces a single-levelstore, which gives the illusion that data on sec-

ondary storage is accessiblein the sameway asdata in primary storage. In complex de-

sign environments, a single-level store offers substantial performance advantages over

conventional �le or databaseaccess. These advantages are crucial to unconventional

databaseapplications such ascomputer-aided design, text management,and geograph-

ical information systems. In addition, a single-level store reducescomplexity in a pro-

gram by freeing the programmer from the responsibility of dealing with two views of

data.

This dissertation proposes,develops and investigates a novel approach for imple-

menting single-level storesusing memorymapping. Memory mapping is the useof virtual

memory to map data stored on secondary storage into primary storage so that the data

is dir ectly accessibleby the processor's instructions. In this environment, all transfer of

data to and from the secondary store takes place implicitly during program execution.

The methodology was motivated by the signi�cant simpli�cation in expressing com-

plex data structuresoffered by the technique of memory mapping. This work parallels

vii

other proposals that exploit the potential of memory mapping, but develops a unique

approach basedon the ideas of segmentation and exact positioning of data in memory.

Rigorous experimentation hasbeenconducted to demonstrate the effectivenessand ease

of useof the proposedmethodology vis-a-vis the traditional approachesof manipulating

structured data on secondary storage.

The behaviour of high-level databasealgorithms in the proposed memory mapped

environment, especially in highly parallel systems,hasbeeninvestigated. A quantitative

analytical model of computation in this environment has beendesigned and validated

through experiments conducted on several databasejoin algorithms; parallel multi-disk

versions of the traditional join algorithms weredeveloped for this purpose. An analytical

model of the system is extremely useful for data structure and algorithm designers for

predicting general performance behaviour without having to construct and test speci�c

algorithms. Mor e importantly , a quantitative model is an essential tool for database

subsystemssuch asa query optimizer .

viii

Acknowledgements

The production of this dissertation would have been so much harder, if not impossi-

ble, without the guidance, encouragement,mentoring, unbounded patience,hard work,

friendship and generosity of my supervisor Dr. Peter Buhr. I thank Peter for everything

he has done for me sincemy arrival at Waterloo.

I am grateful to Dr. Prabhakar Ragdeand Dr. Naomi Nishimura for co-supervising

the theoretical aspectsof this dissertation. Their contribution was instrumental in mak-

ing this dissertation into a reality.

I thank my wife Aparna, daughter Ankita and sonAnir udh, who have all contributed

to the dissertation in more ways than one. They provided the �icker of light during the

darkest hours and ensured that I did not get lost somewhere along the way.

I thank my external examiner, Dr. JohnRosenberg of the University of Sydney, Aus-

tralia and the other members of my examining committee, Dr. Paul Larson, Dr. Frank

Tompa and Dr. Bruno Preissfor their valuable suggestions.

Dr. Paul Larson, Dr. Bernhard Seeger, Andy Wai and David Clark provided valuable

help during the early experiments. Dr. Ian Munr o was always willing to discussmatters

of theory. Several other people, in particular , N. Asokan, Gopi Attaluri, Lauri Brown

and Glenn Paulley, offered suggestions and encouragement that was instrumental in

preserving my senility and I am thankful to all of them.

I am thankful to the Math Faculty Computing Facility at the University of Waterloo

for maintaining a top notch computing environment and for employing me during the

last three years of my stay at UW. MFCF and the wonderful people that work there

certainly made my life much easier. In particular , I thank Bill Ince for never saying no.

Finally, I thank all the people I have interacted with at Waterloo for making my stay

here most enjoyable.

ix

ToAparna

xi

Contents

1 Introduction 1

1.1 The Single-Level Store . 2

1.2 ExactPositioning of Data Appr oach to Memory Mapping 4

1.2.1 EPD Appr oach . 6

1.2.2 Multiple AccessibleDatabasesand Inter-DatabasePointers 7

1.2.3 EPD PersistenceModel . 10

1.3 Motivation . 12

1.4 The Thesis . 13

1.4.1 Dissertation Overview . 15

2 Memory Mapping and Single-Level Stores 19

2.1 Motivation for Using Memory Mapping . 20

2.2 Memory Mapping and the EPD Appr oach 23

2.2.1 Non-Uniform AccessSpeed . 25

2.2.2 Advantages . 25

2.2.3 Disadvantages . 31

2.3 Survey of RelatedWork . 32

2.3.1 Software Appr oachesBasedon Conventional Ar chitectures 32

xiii

PS-Algol / POMS . 33

Napier / Brown's StableStore . 35

E / EXODUS StorageManager . 36

Other Language Efforts . 37

Texas:Pointer Swizzling at PageFault Time 37

Hybrid Pointer Swizzling . 39

ObjectStore . 40

Cricket . 42

QuickStore . 42

2.3.2 Ar chitectural Appr oaches . 44

Bubba DatabaseSystem . 44

MONADS Ar chitecture . 45

Model for Addr ess-OrientedSoftware 45

Single Addr essSpaceOperating Systems(SASOSs) 46

Grasshopper Operating System . 48

IBM RS6000and AS/400 . 49

RecoverableVirtual Memory . 49

Camelot Distributed Transaction System 49

IBM's 801prototype hardwar e architecture 50

Clouds Distributed Operating System 50

2.3.3 Others . 50

2.4 Summary . 51

3 Using the EPD Approach to Build a Single-Level Store 53

3.1 � Database Design Methodology . 53

3.1.1 Design Objectives . 54

xiv

3.1.2 BasicStructure . 57

3.1.3 Representative . 58

3.1.4 Accessors . 62

3.1.5 Critique of � Database . 64

3.2 Comparison of � Database with Related Appr oaches. 65

3.3 Parallelism in � Database . 69

3.3.1 Partitioned File Structuresand Concurrent Retrievals 71

3.3.2 Query Types and Parallelism . 72

3.3.3 RangeQuery Generatorsor Iterators 73

3.3.4 Generic Concurrent Retrieval Algorithm 74

3.4 Programming Issuesand Interfaces . 78

3.4.1 Polymorphism . 78

3.4.2 Generic File Structuresand AccessMethods 79

3.4.3 StorageManagement . 80

Memory Organization . 81

3.4.4 Nested Memory Structure . 83

3.4.5 Addr essSpaceTools . 83

3.4.6 SegmentTools . 84

3.4.7 � Database Programming Interface 85

3.4.8 Representative Interface . 86

ClassRep . 86

ClassRepAccess . 87

Organization of Representativeand AccessClasses 89

ClassRepWrapper . 91

3.4.9 Heap Tools . 92

StorageManagement Schemes . 93

xv

Nesting Heaps . 94

Over�ow Control . 95

Expansion Object . 96

3.4.10 Linked List Example . 99

List Application . 99

3.4.11 Linked List File Structure . 101

List Node . 101

Administration . 102

Expansion Class . 103

File Structure Class . 104

AccessClass . 107

Generator . 107

Wrapper . 109

3.4.12 Programming Conventions . 111

3.4.13 B-TreeExample . 112

B-TreeApplication . 113

Nested Memory Manager . 114

3.5 Analytical Modelling of the System . 119

3.5.1 Survey of RelatedWork . 120

Theoretical Models . 120

DatabaseStudies . 122

3.5.2 Modelling . 124

Disk Transfer Time . 127

Memory Mapping Costs . 128

3.5.3 Using the Model to Analyze an Algorithm 130

3.6 Summary . 131

xvi

4 Experimental Analysis of EPD File Structures 133

4.1 Testbed . 135

4.1.1 Hardwar e/Softwar e Platform . 135

4.1.2 SequentDual-Channel Disk Controller (DCC) 135

4.1.3 DYNIX Virtual Memory Implementation 136

4.1.4 Experimental Testbed . 138

4.2 Experimental Structure for Feasibility Studies 140

4.3 Sequential File Structures . 141

4.3.1 Pre�x B
�

-Tree . 142

4.3.2 R-Tree . 143

4.3.3 Network Graph . 145

4.4 Resultsand Analysis of Experiments on SequentialFile Structures 145

4.4.1 Stand-aloneSystem:No External Interference 146

4.4.2 Loaded System:External Interference 147

4.5 Partitioned B
�

-Tree . 149

4.5.1 Partitioning Algorithms . 149

4.5.2 Modi�ed File Structure . 150

4.5.3 Concurrent Retrieval Algorithm . 152

4.5.4 Experimental Analysis . 152

Effect of Employing Extra Segmentsfor Retrieving Data 155

4.6 Partitioned R-Tree . 160

4.6.1 Partitioning Algorithms . 160

4.6.2 Modi�ed File Structure . 160

4.6.3 Concurrent Retrieval Algorithm . 161

4.6.4 Experimental Analysis . 161

4.7 Summary . 171

xvii

5 Application and Validation of the Analytical Model 173

5.1 Parallel Pointer-BasedJoin Algorithms . 174

5.2 Parallel Pointer-BasedNested Loops . 178

5.2.1 Algorithm . 178

5.2.2 ParameterChoices . 181

5.2.3 Analysis . 181

5.3 Parallel Pointer-BasedSort-Merge . 185

5.3.1 Algorithm . 185

5.3.2 ParameterChoices . 188

5.3.3 Analysis . 189

5.4 Parallel Pointer-BasedGrace . 195

5.4.1 Algorithm . 195

5.4.2 ParameterChoices . 197

5.4.3 Analysis . 198

5.5 Model Validation . 201

5.5.1 Experimental Testbed . 201

5.5.2 Results . 203

5.6 Predictions . 203

5.6.1 Speedupand Scaleup . 206

5.7 Summary . 210

6 Unresolved Issues and Future Work 213

6.1 Concurrency Control . 213

6.1.1 Integration of Concurrency, Distribution and Persistence 215

6.1.2 Scalability . 215

6.2 Recovery Control . 216

xviii

6.2.1 Shadow Paging . 217

6.2.2 Write Ahead Logging . 219

6.2.3 PageDif �ng . 219

6.3 Support for Virtual Pointers . 220

6.3.1 PersistentCode . 223

6.4 Implementation of Inter-DatabasePointers 223

6.5 Modelling . 225

7 Conclusions 227

7.1 Review of Work Done . 227

7.1.1 Static Type Safety . 227

7.1.2 Development of the EPD Appr oach 228

7.1.3 Experimental Work . 228

7.1.4 Feasibility Studies . 229

7.1.5 Analytical Modelling . 229

Bibliography 231

Index 245

xix

List of Tables

3.1 Parametersof the Model . 126

4.1 Comparison of Memory Mapped and Traditional AccessMethods 148

4.2 PeakLoad Retrievals . 149

4.3 Comparison of Single Disk B
�

-Treewith Four Disk B
�

-Trees 154

4.4 ExpectedEffectivenessof B
�

-TreePartitioning Algorithms 156

4.5 Effect of Extra Worker Segmentson Concurrent B
�

-TreeRetrievals 158

4.6 Theoretical Effectivenessof Round-Robin R-TreePartitioning Algorithm . 163

4.7 Using Multiple Index Search Tasksfor Parallel Window Queries 165

4.8 Using Multiple Index Search Tasksfor Parallel Point Queries 166

4.9 Using Multiple RepresentativeSegmentsfor Parallel Window Queries . . 167

4.10 Using Multiple RepresentativeSegmentsfor Parallel Point Queries 168

5.1 Variables and ParametersUsed for all Joins 177

5.2 Parametersof Sort-Merge Join . 187

5.3 Parametersfor GraceJoin . 195

5.4 Validation Values of Model Parameters . 202

xxi

List of Figures

2.1 Two Views of Data . 21

2.2 Memory Mapping . 23

3.1 � Database Design Methodology: BasicStructure 58

3.2 StorageModel for the Representative . 60

3.3 Simultaneously AccessingMultiple File Structures 61

3.4 StorageLayout for a Partitioned File Structure 63

3.5 Two Forms of Concurrency in a File Structure 70

3.6 Generic Concurrent Retrieval Algorithm . 76

3.7 Nested Memory Structure . 84

3.8 Organization of Representatives . 90

3.9 Linked List StorageStructure . 102

3.10 B-TreeStorageStructure . 116

3.11 BasicStructure of the Analytical Model . 125

3.12 Machine Dependent Functions . 129

4.1 SequentDual-channel Disk Controller (DCC) 136

4.2 DYNIX PageReplacementAlgorithm . 137

4.3 Minimum Bounding Rectanglesin an R-Tree 144

xxiii

4.4 Network Graph Structure . 146

4.5 Modi�ed B
�

-TreeFile Structure . 151

4.6 Comparison of Single Disk B
�

-Treewith Four Disk B
�

-Tree 153

4.7 Using Multiple Segmentsfor Retriever Tasks(FSTs) 157

4.8 Comparison of Single Disk R-Treewith Four Disk R-Trees. 162

4.9 Using Multiple Index Search Tasksto Perform Parallel Queries 164

4.10 Queueing Systemfor the Generic Concurrent Retrieval Algorithm 167

5.1 SegmentPartitioning Structure . 176

5.2 Parallel Pointer-BasedNested Loops . 179

5.3 Disk Layout: Parallel Pointer-BasedNested Loops 182

5.4 Parallel Pointer-BasedSort-Merge . 186

5.5 Disk Layout: Parallel Pointer-BasedSort Merge 189

5.6 Time Line Progressof Parallel Sort-Merge 194

5.7 Parallel Pointer-BasedGrace . 196

5.8 Model Validation . 204

5.9 Model Predictions . 205

5.10 Speedup
�

P � D � . 207

5.11 Scaleup(P � D ��� R��� 3200) . 211

5.12 Scaleupwithout Mapping Overhead (P � D ��� R��� 3200) 212

6.1 Embedded Virtual Pointer Problem . 221

6.2 Ef�ciently Supporting Virtual Pointers . 222

xxiv

List of Programs

3.1 BasicRepresentativeInterface . 86

3.2 BasicAccessClassInterface . 88

3.3 BasicWrapper Interface . 91

3.4 Using a Wrapper . 93

3.5 Heap Expansion Object . 96

3.6 Interface for Uniform StorageManager . 97

3.7 Specializing a Uniform StorageManager . 98

3.8 Interfaces for Variable and Dynamic StorageManagers 99

3.9 Linked List Example . 100

3.10 Abstract List Node Class . 101

3.11 List Administration Class . 104

3.12 List Expansion Class . 105

3.13 Linked List Class . 106

3.14 List AccessClass . 108

3.15 List Generator . 110

3.16 Using the List Generator . 110

3.17 Using a Linked List Wrapper . 111

3.18 De�nition of a Linked List Wrapper . 112

xxv

3.19 Example Program using a Generic B-Tree 114

3.20 Administrative Classfor the B-Tree . 115

3.21 Expansion Classfor the B-TreeStorageManager 117

3.22 B-TreeLeaf Node Class . 117

3.23 Expansion Classfor the B-TreeLeaf Node StorageManager 118

3.24 Leaf Node Member Routine for Splitting . 118

3.25 Leaf Node Member Routine for Inserting a New Record 119

xxvi

Chapter 1

Introduction

Researchersand programmers working with complex and possibly large persistent data

structureshave traditionally dealt with two dif ferent views of data, viz., the data stored

on secondary storage (e.g., a disk) and the structured data in primary storage as seen

by the processor's instructions. Thesetwo views of data are largely incompatible with

each other. In primary storage, physical or virtual memory pointers are used to con-

struct complex relationships among data; establishing theserelationships without mem-

ory pointers is often cumbersomeand expensive. On the other hand, data on secondary

storage is organized without the use of memory pointers. The traditional approach of

maintaining and manipulating these two disparate views of essentially the same data

has resulted in a dichotomy that is quite arti�cial – researchers in the programming lan-

guagecommunity have dealt primarily with the primary storageview of data, while the

databaseresearchershave concernedthemselveswith the handling of data on secondary

storage. In addition, when dealing with secondary storage data, the programming lan-

guage community has tended to use tools, such as �le systems,made available by the

operating system designers whereas the databasecommunity has designed and used

its own alternative tools. The dichotomy has meant, among other things, that the pro-

gramming language,databaseand operating systemcommunities have spent signi�cant

effort duplicating eachothers' work, albeit in separateenvironments and with dif ferent

1

2 Introduction

immediate goals. A prime example of this replication of effort is the page replacement

strategies developed by the operating system designers as compared to the extensive

buffer management strategiesdeveloped by their counterparts in the databasecommu-

nity; the two strategiesare often in con�ict with, rather than enhancing, one another. An

additional consequenceof maintaining the two views of data has been development of

applications that spend signi�cant amounts of execution time converting data back and

forth from one view to the other. To be fair, it needsto bepointed out that the mentioned

dichotomy was borne out of, and sustained by, a lack of essentialarchitectural tools be-

ing available at the user level. However, during recent years many of these historical

de�ciencies have been removed or made lessrestrictive at the hardwar e and operating

system levels. This development, in conjunction with an increasedappreciation of the

bene�ts provided by a merging of the two views of data, especially for complex emerg-

ing databaseapplications, has resulted in a signi�cant increasein collaboration among

the programming language, databaseand operating system communities.

1.1 The Single-Level Store

Signi�cant research has occurred over the last decade, starting with the seminal work

by Atkinson, et al [ABC
�

83, AM85], on ef�cient and easy-to-usemethodologies for con-

structing, storing, and subsequently retrieving and manipulating persistent data in a

fashion that makes the secondary storage transparent to the programmer. This research

extendsprimary storagepracticesand tools so that they also apply to secondarystorage.

Merging primary and secondary storage in this way producesa single-levelstore, which

gives the illusion that data on secondary storage is accessiblein the same way as data

in primary storage. This uniform view of data eliminates the need for complex and ex-

pensive execution-time conversions of structured data between primary and secondary

1.1The Single-Level Store 3

storage and allows the use of the expressive power and the data structuring capabil-

ities of a general purpose programming language for creating and manipulating data

on secondary storage, which is analogous to the goals of virtual memory. Although a

single-level store was investigated as far back as the Multics system (1968)[Org72], it

has seenonly limited use, even in the �eld of operating systems. Only in the last few

years has the use of single-level stores blossomed in both the databaseand program-

ming language communities [CFW90, SZ90a,LLOW91, RCS93]. In complex design en-

vir onments, a single-level storeoffers substantial performance and programming advan-

tagesover conventional �le or databaseaccess.Theseadvantagesare crucial to complex

databaseapplications such ascomputer-aided design, text management,and geograph-

ical information systems.

While there are several ways to implement a single-level store, some projectsdo so

using memory mapping. Memory mapping is the use of virtual memory to map data

stored on secondary storage into primary storage so that the data is dir ectly accessible

by the processor's instructions. In this environment, there are no explicit read and write

routine calls to accessdata on secondarystorage. All I/O operations are done implicitly

by the operating system during execution of a program when pointers are calculated

and dereferenced. Hence, data structures related by pointers (e.g., a linked list) can be

stored onto secondary storage and still be manipulated dir ectly via pointers. When the

working set of a databaseprogram can be kept entirely in memory, performance begins

to approach that of memory-r esident databases.

While there are few disadvantages in using memory mapping, it is still uncommon

to seeit used for accessingsecondary storage in traditional �le and databasesystems.

One explanation is a lack of general virtual memory hardwar e on many computers and

limited accessto memory mapping capabilities by older operating systems.Stonebraker

concluded [Sto81] that the DBMSsmade little or no useof servicesoffered by the operat-

4 Introduction

ing systembecausetheseserviceswereeither inef�cient or inappr opriate. However, with

today's large virtual addressspaces(32-64bits and more) and powerful memory man-

agement co-processors,memory mapping of secondary storage makes excellent sense,

and operating systemsare beginning to provide accessto this capability, e.g.,the mmap

system call in UNIX and more general accessto virtual memory in the Mach [TRY
�

87]

and SunOS[Sun90] operating systems.

1.2 ExactPositioning of Data Approach to Memory Mapping

All single-level storessupport addressesin someform to relatedata, and theseaddresses

dir ectly referencethe data. The particular addressing mechanism used is central to the

design and performance of each persistent storage system; Cockshott [Coc85] gives a

general overview of a number of possible addressingschemes.Fundamental to all per-

sistent storage systemsis the following addressingproblem. When data is copied from

secondary to primary (or virtual) storage, either the data must be positioned exactly

where it was originally created to maintain integrity of embedded pointers, or the em-

bedded pointers must be modi�ed to re�ect the new location of data in primary storage.

The former is dif �cult to handle becausedata from multiple �les or databasesmay need

to be copied to the same locations, thereby producing an irr econcilable con�ict. The

latter caseis dif �cult to handle becauseit must be possible to locate all embedded point-

ers so they can be updated, and there is the additional complexity and runtime cost of

reliably modifying the pointers. Pointer modi�cation in this manner is called pointer

swizzling [CAC
�

84, Mos90]. Pointer swizzling is essentially a software version of vir -

tual memory. A reference through a pointer to data on disk is detected by a software

or hardwar e check,storage is allocated in primary storage, the data from disk is copied

into that storage, and �nally , the dereferencedpointer is updated (swizzled) to refer to

1.2ExactPositioning of Data Approach to Memory Mapping 5

the primary storage location of the data read from secondary storage. Depending upon

the actual swizzling technique used, futur e usesof the samepointer may need no fur -

ther checking to accessthe primary storage copy of the data dir ectly. Pointer swizzling

is called lazy when done only for the pointer being dereferenced, i.e., when the pointer

is actually used during execution, and eagerwhen done for the dereferencedpointer as

well as all pointers embedded in data read into primary storage. In the latter case,the

amount of data read in, over and above that needed by the speci�c pointer dereference,

varies; it canbe the sizeof a logical unit such asan individual record, or a �xed sizesuch

asa page or disk block. The smaller the amount of data read at one time, the greater the

total I/O cost; alternatively, the larger the amount of data read, the more pointers that

may need swizzling even if they are never dereferenced. In lazy pointer swizzling, there

is normally some additional cost for each dereferenceof a pointer to determine if the

pointer hasalready beenswizzled. Eagerswizzling of pointers, on the other hand, elim-

inates the per dereferencecheckat the costof swizzling somepointers that may never be

dereferenced.Two other types of pointer swizzling techniques that have beenproposed

recently are called adhocand hybrid pointer swizzling.

Ad-hoc pointer swizzling usesmemory mapping techniquescoupled with swizzling

of pointers, asdescribed below. In ad-hoc schemes,the persistent pointers are the same

size as the virtual memory pointers and the two may be identical. Whenever possible,

the page containing the referent data is copied into the virtual memory indicated by the

persistent pointer being dereferenced,i.e., an attempt is made to memory map the disk

page to the virtual memory locations where the page was last memory resident so that

pointers to data contained in the page remain correct. If the desired virtual memory

locations are already occupied, e.g.,when two objectswith identical persistent pointers

from dif ferent persistent storage areasneed to be accessedsimultaneously, swizzling is

employed. One major problem exhibited by ad-hoc schemesis their greedy allocation of

6 Introduction

virtual memory.

Hybrid pointer swizzling combines the bene�ts of lazy and eager schemes,and at-

tacks the greedy virtual allocation problem by dividing the swizzling processinto two

phases. In the �rst phase, embedded pointers are swizzled into an intermediate for-

mat called partly swizzledpointers. A partly swizzled pointer is converted into its �nal

memory format called fully swizzledpointerwhen it is actually dereferenced. Details of

the various pointer swizzling techniques are presented in chapter 2. In general, dir ect

pointer manipulation, e.g.,pointer arithmetic, is impossible in most swizzling schemes.

The �rst persistent storagesystemsto appear [PS-87, Bro89] used lazy pointer swiz-

zling implemented entirely in software. In recent times, schemeshave been proposed

that perform eagerpointer swizzling at page fault time [Wil91a] or employ hybrid swiz-

zling of pointers [VD92]. ObjectStore [LLOW91] is a commercial databasesystem that

usesad hoc pointer swizzling, and other similar schemeshave recently appeared, such

as QuickStore [WD94]. However, a signi�cant performance advantage of a single-level

store is lost if all or most of the pointers embedded in data have to beswizzled. This loss

of performance is especially signi�cant for operations that incur high overhead in data

preparation; examples include operations like sequential scans,where the data is ac-

cessedonly once,and operations that deal with large data structureswith small primary

storage, where the data is implicitly fetched and prepared multiple times. Therefore,

I have pursued an alternative approach to memory mapping, called exactpositioningof

data(EPD) that eliminates the swizzling overhead for pointer dereference.

1.2.1 EPD Approach

As part of this pursuit, I have developed a toolkit, called � Database (pronounced micro-

database), for building persistent data structures using the EPD approach to memory

mapping. The EPD approach employs a novel technique that allows application of an

1.2ExactPositioning of Data Approach to Memory Mapping 7

old solution to the problem of addresscollisions when multiple �les or databasesare

accessedsimultaneously by an application. The old solution is hardwar e segmentation;

eachhardwar e segment is an addressspace,starting at a virtual zero, in which persis-

tent data structurescan be built, stored, and subsequently retrieved and updated. Data

stored in multiple segmentscan be simultaneously accessedby an application program

becauseeach segment has its own non-con�icting address-space.When a segment is

mapped into primary memory, embedded pointers that refer to data within the segment

do not require modi�cation and are treated like normal memory pointers; inter-segment

or inter-databasepointers require special treatment, but in general, thesepointers repre-

sentasmall percentageof the total number of pointers accessedduring a typical database

computation. The issue of intra and inter-segment pointers implemented in software

was addressedby van Dam and Tompa [vDT72] in 1971. Mor e recently, the MONADS

architecture [Ros90]employs similar ideas at a hardwar e/ar chitectural level in its object

store layer. The current implementation of � Database is basedon the UNIX operating

systemand usesthe systemcall mmap to mimic segmentation on conventional hardwar e

without user accessiblesupport for segmentation; Brown's stable store [Bro89] predates

this work and also usesmmap to implement a singlerepository persistent store.

1.2.2 Multiple Accessible Databasesand Inter -Database Pointers

The EPD approach,and someother memory mapping schemes,support multiple simul-

taneously accessiblepersistent areasor databases,each of which can be viewed as an

independent single-level store by a program. This support is fundamental to the world

view adopted in this work that there will always be multiple, independent data reposi-

tories motivated by the desire to cluster related data, enhancesecurity, make it easierto

distribute data and simplify addressing.All schemesthat support simultaneous accessto

multiple databaseshave to deal with the problem of inter-databasepointers that are re-

8 Introduction

quir ed to construct relationships among objectsstored in dif ferent databases.Although

the complexity of implementing inter-databasepointers varies with individual schemes,

there is usually some cost to be paid for the processingof inter-databasepointers over

and above the cost of dereferencing intra-database pointers. Someschemesbypass the

problems related with accessingmultiple databasesby only supporting a single persis-

tent addressspace,i.e., all persistent objectslive in a single repository and are uniformly

accessedon disk(s). Such systems usually require a format for persistent pointers that

allows a very large persistent space.However, the support is provided at the costof pre-

cluding the notion of multiple repositories, which I believe is unrealistic. Further, these

systemsincur high execution time costsassociatedwith pointer swizzling.

As a consequenceof the additional cost imposed by the processingof inter-database

pointers, the performance of all multi-database approachesdegrades when an applica-

tion program dereferencesa relatively large number of inter-databasepointers as com-

pared to intra-database pointers. It is typical for a computation to dereference many

more intra-database pointers than inter-databasepointers. The clustering of relatedob-

jects in both traditional and emerging databaseapplications is a widely acceptedphe-

nomenon that supports the above assertion. It would be interesting to conduct a study

of existing applications to determine the number of nearobjectsand far objectsreferenced

during a computation. Such a study, however, is beyond the scopeof this work and I

was unable to �nd any published reports to contradict the popular wisdom asit applies

to this aspect.In other wor ds, the degeneratecasefor multi-database approachesis quite

atypical for real applications and the costof supporting multiple databasesis completely

justi�ed by the bene�ts derived from such support.

It should also be pointed out that the performance of multi-database memory map-

ping schemesapproachesthe performance of single-databasememory mapping schemes

for applications that only accessa single databaseif the memory mapping approach op-

1.2ExactPositioning of Data Approach to Memory Mapping 9

timizes the casewhere data can be copied into its previous memory locations. The dif-

ferencesamong various memory mapping schemesarise when an application needs to

accessmultiple databasessimultaneously.

When compared with other multi-database approaches,the main disadvantage of

the EPD approach is the additional cost of accessingdata between segmentsunder cer-

tain scenarios. In the EPD approach, an inter-databasepointer is always dereferenced

within the virtual spaceof the segment corresponding to the databasecontaining the

referent data. Thus, the additional cost of dereferencing an inter-databasepointer is the

cost of establishing a connection to the appropriate segment, where the actual derefer-

encing of the pointer takes place at normal intra-database pointer dereferencespeeds.

However, sometimes data from one databaseis needed simultaneously with data from

another database,e.g.,when data objectsfrom dif ferent databasesneed to be compared

during the execution of a program. This situation canbehandled in threedif ferent ways,

depending upon the facilities provided by the hardwar e and the operating system:

1. by using hardwar e segment instructions, e.g., an inter-segment compare instruc-

tion,

2. by copying data dir ectly from one segment to the other by means of block move

instructions, which implies an inter-segmentcopy instruction,

3. by copying data into and out of a shared memory area that is accessibleto all

segments.

On hardwar e that does not support segmentation, no inter-segment instructions exist

and it is necessaryfor segmentsto share someportion of their addressspacefor transfer-

ring information, possibly for further processing. Therefore, � Database segmentshave

an addressspacethat is divided into private and shared portions implemented using

shared memory.

10 Introduction

The lack of segmenthardwar e forcesinter-segmentcopying of data, resulting in poor

performance of the EPD approach when the nature of computation requires copying

large amounts of data out of containing segment(s) to shared memory. Other multi-

databaseapproacheshave similar degenerate cases. For example, schemesthat map

data from multiple databasesinto a single segment do not have to copy data in a man-

ner similar to the EPD approach. However, such schemeshave to deal with the issue

of virtual addresscollisions and the solutions to this problem impose additional costs;

e.g.,White and DeWitt[WD94 , p. 406]showed that for the worst casescenarioinvolving

relocations, the performance of their storagesystemworsened by a factor of three.What

is essential is that the degenerate casedoes not occur often. In subsequent chapters,

dif ferent techniques will be demonstrated that signi�cantly reduce copying in the EPD

approach, further reducing degeneratesituations.

1.2.3 EPD PersistenceModel

The following terms are used in this dissertation. A �le structure is de�ned to be a data

structure that is a container for user records or arbitrarily complex data structures on

secondary storage;a �le structure may relate the contained data in a particular way, for

example, maintaining a set of records in order by one or more keys. A �le structure is

conceptually similar to a databaseand the two terms are used inter-changeably in this

dissertation. An accessmethodis de�ned to be a particular way the data objects in a

�le structure are accessed;eachaccessmethod provides a particular interface to the �le

structure. Examplesof dif ferent accessmethods are: one time reading of a setof records,

sequential accessof records, keyed accessof records, depth �rst traversal of a B-Tree.

The EPD approach to memory mapping usesthe notion of a separatepersistent area

in which data objectsarebuilt or copied if they are to persist; this decision was in�uenced

by ideas presentedby Buhr and Zarnke [BZ86, BZ89]. From the user's perspective the

1.2ExactPositioning of Data Approach to Memory Mapping 11

approach is largely traditional, as user data must be copied to and from the persistent

area through a traditional interface (e.g., get() and put()) that provides encapsulation

of the �le structure to ensure its integrity . Therefore, in this design, memory mapping

normally comesinto play only for the �le structure designer, which is necessaryto sup-

port multiple accessible�le structures in a single application while allowing each �le

structure to use conventional memory pointers without having to perform any pointer

modi�cation whatsoever.

The major alternative to this persistencemodel is reachability. Reachability is the no-

tion that once a pointer has been made persistent, all data reachablefrom that pointer

also persists. In other wor ds, a data item persists aslong assomeactive data item refers

to it, dir ectly or indir ectly. In systemsbasedon reachability, the executing program cre-

atesan arbitrarily complex data structure in its addressspaceand storesa root pointer to

that data structureinto apersistentstore. Upon program termination, the systemperforms

a recursive traversal of the data structure, storing it in some way in the persistent store;

retrieval occurs in a simpler fashion by dereferencing the root pointer, which causesthe

data structure and all of its referenced elements to become accessible. The concept of

reachability relies on the existenceof a special object, usually called the persistentroot.

All objectsin the transitive closure of the persistent root are reachablefrom the root and,

therefore,persist.

Reachability is a powerful abstraction with somevery bene�cial properties especially

from the user's point of view, becausethe user is completely relieved of the responsibility

of having to manage object storage. The user does not have to explicitly specify persis-

tence for the objects,neither does the user have to worry about freeing storage for ob-

jects that are no longer needed becausedeallocation happens automatically in a system

basedon reachability. However, thesebene�ts comeat a hefty price becausereachability

imposes complex storage management and garbage collection requirements upon the

12 Introduction

system, which in my view, constitute a prohibitive cost. As well, while system handled

storage management is useful for most applications, it prevents the implementation of

sophisticated user-de�ned schemes,which are essential in certain circumstances. Also,

it may be impossible to delete objects from the store if referencesto the objects “leak

out”, which may be an unacceptable prohibition from an object management point of

view. Reachability also implies that there can never be a dangling referencein the store.

I do not believe that such a requirement is scalablewithout an exorbitant implementa-

tion and/or run time cost. Finally, underlying the notion of reachability is a world view

that consists of a single ether, i.e., all objects live in a single addressspace that spans

all physical storage devices in the system, the network and even the entire universe.

The notion of the ether is in dir ect contrast to my chosenworld view comprising of re-

lated objectsstored in independent collections; a view I believe is much closer to the real

world of objects. While it is possible to selectively apply the abstraction of reachability

to independent collections of objects,such an attempt dilutes the concept and results in

a diminution of the bene�ts of reachability. In view of thesereasons,I have chosenthe

explicit persistent areasmodel over reachability for this work.

1.3 Motivation

I was motivated to investigate a memory mapped single-level store based on the EPD

approachbecauseit seemedlike the perfect solution to the dichotomy between program-

ming language and databasetechniques, and yet I found very little evidence of its use

in universities or in industry . At the beginning of my investigation, there were only a

few systemsin various stagesof development, and thesesystemseither were basedon

a world view I considered unrealistic (single persistent addressspace)or did not apply

the memory mapping technique asdir ectly asI envisaged. In addition, there was a com-

1.4The Thesis 13

plete lack of experimental evidence for or against the effectivenessof single-level stores

in general and memory mapped single-level storesin particular . A sound practical and

theoretical framework in which to measureand evaluate this emerging research was also

missing. Consequently, I have pursued the EPDapproachto memory mapping, outlined

in section1.2,for building single-level stores. I have designed and developed a method-

ology for implementing memory mapped single level storesbasedon the EPDapproach,

performed rigor ous experimentation to demonstrate the effectivenessof the approach,

developed algorithms tuned for performance in an EPD environment and constructed a

theoretical framework within which the EPD and other related approachescan be stud-

ied and evaluated. In addition to �ndings presentedin this dissertation, the approach

followed by this work hasbeenvindicated by the emergenceof other systemsthat have

followed similar approaches.

1.4 The Thesis

The thesis of this dissertation is that the EPD approach to memory mapping provides a

meansof simplifying the implementation and impr oving the performance of the meth-

ods used for manipulation of persistent data. The major issues and problems arising

from the use of the EPD approach to memory mapping as a means of building a per-

sistent storage system or databaseare examined. Many of the problems, such as par-

allelization of I/O, have essentially the sameimplications in memory mapped systems

as they do in traditional databases.However, the use of memory mapping allows more

ef�cient and straightforwar d solutions and provides an enormous bene�t in terms of

simpler interfaces between the low-level databasestructuresand the databasedesigner,

and subsequently, between the DBMS and the end user. Memory mapped databasesare

simpler to implement than their traditional counterparts, while eliminating the need for

14 Introduction

a traditional buffer manager as the operating system managesall I/O operations. On

the other hand, some problems, such as recovery control, are much harder to solve in a

memory mapped system, largely due to the lack of essentialsupport at the architectural

level. As well, someinef�ciencies canbe intr oduced becauseof lack of control over page

replacement in most contemporary architectures.

In order to demonstrate the thesis, a prototype implementation, an experimental

testbed and a theoretical model were designed and developed:

� to allow experiments to be conducted for comparing the construction and perfor -

manceof memory mapped data structureswith their traditional counterparts,

� to identify fundamental problems related to the memory mapping approach and

its implementation on conventional architectures,

� to provide strong empirical evidence that traditional databasetechniques can be

ef�ciently implemented in a memory mapped environment with signi�cantly re-

duced programming effort,

� to show that the solutions presentedare stableenough to allow the construction of

analytical models for predicting behaviour,

� to provide necessarytheoretical and experimental tools that canbeused for study-

ing high level sequential as well as parallel databasealgorithms and for perfor -

mance tuning.

In parallel with the work presentedin this dissertation, a few other proposals have

beenpublished that exploit similar ideas and contain somecommon features.However,

eachof the other proposalshasdif ferencesthat make this work novel. Thesedif ferences

have a profound impact on how eachproposal works. In somecases,the dif ferencesare

1.4The Thesis 15

largely in the way the overall system is constructed. The important thing to note is that

thesesystemshave been developed independently and most have been commissioned

only in the last few years. Further, sincememory mapping technology is still in a nascent

state,thereare few measuresby which to judge memory mapped systems,making it im-

possible to evaluate and compare theseproposals. All the approacheshave to be consid-

ered viable and pursued much further before a consensusor a clear winner emerges. It

is partially for this reasonthat I decided to do extensivemodeling work; no other project

has developed a quantitative analytical model of a memory mapped system. It is my

belief that the model will prove extremely useful for studying and evaluating various

memory mapped and related systems. In addition to the conceptual dif ferenceswith

other work, another unique feature of this work is the extensive experimentation that

has beencarried out on a number of dif ferent databasestructures.

There are someaspectsof the thesis that have not been implemented due to the size

of the undertaking. A deliberate decision was made to concentrate efforts on building

the core module of the system and on performing an extensive performance analysis,

both comparative and quantitative, of the system. Further, the emphasisof my work has

been on the storage aspectsof a persistent system and, assuch, language design issues

were not examined in detail. As a result, I choseto add persistencemechanisms to an

existing language, � C++ [BDS
�

92], by meansof a set of library classesthat can be linked

with the applications that need to manipulate persistent data.

1.4.1 Dissertation Overview

The dissertation is divided into the following parts:

� Single-Level Stores: Chapter 2 motivates and intr oduces memory mapping and

the EPD approach to building a single-level store in more detail. Advantages and

16 Introduction

disadvantagesof memory mapping and single-level storesover the traditional ap-

proachesare outlined, followed by an extensive survey of related work.

� The EPD Approach to Memory Mapped Stores: Chapter 3presentsthe main body

of this work; the contributions have beendivided into four parts:

1. The EPD approach proposed and developed by this dissertation is presented

along with a detailed design and critique of the system. The presentation

includes a comparison with related work.

2. The EPD approach allows general primary storage programming languages

tools to be applied, with equal ease,to secondary storage data and its ma-

nipulation. It is demonstrated how thesetechniques are used in building �le

structures based on the EPD approach. A detailed description of the pro-

gramming interface to � Database is also provided.

3. In addition to building sequential �le structures, partitioned �le structures

and parallel accessmethods were designed, developed and analyzed. Details

of an investigation into the issue of parallelism in an EPD basedsystem are

presented.Parallelism is exploited both at the storageand retrieval levels.

4. An analytical model of computation for making accuratepredictions is an im-

portant tool that goesa long way towards demonstrating the thesis. A survey

of the existing I/O and memory models revealed that none of thesemodels

applied well to the system proposed in this dissertation. Consequently, sig-

ni�cant effort was devoted to the design and development of a reliable ana-

lytical model of the proposed system. To make the effort even more useful,

the model that hasbeendeveloped is quantitative asopposed to qualitative.

1.4The Thesis 17

� Experimental Analysis of EPD File Structures and Access Methods: Chapter 4

presentsthe results of a seriesof experiments conducted on a carefully designed

testbed. The experience gained from conducting these experiments suggestsnot

only that EPD�le structuresand their accessmethods canbebuilt moreeasily than

their traditional counterparts, but also that, in most cases,memory mapped struc-

turesperform asef�ciently or better than their traditional counterparts. Further re-

sults presentedin the chapter show that memory mapped parallel accessmethods

perform quite admirably in an EPD system and offer somedistinct advantages.

� Applying and Validating the Analytical Model: Parallelized multi-disk versions

of several databasejoin algorithms were designed and implemented. The analyti-

cal model developed aspart of this work was employed to perform a quantitative

analysis of thesealgorithms when run on a speci�c machine. The analysis and its

veri�cation by meansof experiments are presentedin chapter 5.

� Unresolved Aspects of the System: Two important servicesprovided by a DBMS

are concurrency and recovery control. Theseaspectshave not been dealt with in

the current phase of this work. Chapter 6 contains a discussion of problems as-

sociated with providing theseservicesin EPD systems. The discussion includes a

survey of related work highlighting approachestaken by related memory mapped

single-level stores.Someof thesesolutions can be applied to systemsbasedon the

EPD approach.

Chapter 2

Memory Mapping and Single-Level Stores

The main objective of this work is to investigate issuessurrounding a single-level store

basedon the exact positioning of data (EPD) approach to memory mapping. The main

reasonsfor using a single-level store are:

� A single-level store eliminates the need for expensive execution time conversions

of structured data that are essential in a traditional multi-level store. As well, the

cost of referencing persistent data is the sameasa normal memory referenceonce

the initial transfer of data from secondary to primary memory has occurred.

� The uniform view of data afforded by a single-level store has various other im-

plications, the most important of these being reduced programming complexity,

and the availability of the expressivepower and the data structuring capabilities

of a general purpose programming language for creating and manipulating data

stored on secondary storage.

In a single-level store based on the EPD approach, the contents of a mapped �le

structure are accessibleby a program just like the contentsof a data structure in primary

storage. What dif ferentiates a mapped �le structure from primary memory data is that

the �le structure data persists after a program using it terminates and during its use,

the time to accessits data is non-uniform becausethe �le structure is kept on secondary

19

20 Memory Mapping and Single-Level Stores

storagebut is implicitly cachedin primary storageby memory mapping. In � Database, a

�le structure is maintained in a named UNIX �le. A mapped �le structure and its access

methods need to be optimized to achieve good performance in the faceof non-uniform

accesstime, usually by impr oving locality of referencesby clustering related objects.

2.1 Motivation for Using Memory Mapping

Complex data structuresin primary storageareusually organized with memory pointers

used dir ectly by the processor's instructions, rather than organized physically, such as

elementsof an array or records in a disk block. It is extremely dif �cult and cumbersome

to construct complex relationships among data objectswithout the help of dir ect point-

ers. Thus, it is highly desirable to be able to usepointers in organizing and relating data

in a �le structure. However, it is generally impossible to store and retrieve data struc-

turescontaining dir ect pointers from secondary storagewithout converting (at best) the

pointers or (at worst) the entire data structure into a dif ferent format. In other wor ds,

the data structure in primary storagehas to be reorganized into a form (e.g.,a stream of

bytes) that is suitable for secondarystorage;the reversemust take place when the stored

data structure is retrieved into primary storage. Considerable effort, both in terms of

programming and execution time, is required to transform data from one format to the

other in this manner. As an example, �gur e 2.1illustrates the transformations that occur

for restructuring a treedata structure into a stream of bytes suitable for secondary stor-

ageand vice-versa. The transformations X and Y are data structure speci�c and must be

executedeachtime the data is written to or read from secondarystorage. Consequently,

the use of powerful and �exible data structuring capabilities of modern programming

languagesare not dir ectly available for manipulating secondary storagedata.

In spite of theserather taxing dif �culties, databaseimplementors have traditionally

2.1Motivation for Using Memory Mapping 21

�����

�����

�

�

�

�

�

�

�

�

�

�

��

�

Data Structrues SystemSupported File
(e.g.,Tree) (e.g.,Stream in UNIX)

Y

X

Primary Storage Secondary Storage

Figure 2.1:Two Views of Data

rejectedthe useof memory mapped �les and have chosento implement the storagelevel

support for databasesusing traditional approaches(e.g., explicit buffer management).

This rejection is not entirely basedon a lack of availability of memory mapping facilities.

The earliest use of memory mapping techniques can be traced back more than 20 years

to the Multics system [BCD72]. However, earlier operating systems,including Multics,

provided thesefacilities in a framework that was very rigid and dif �cult to work with.

There are other reasonsgiven to explain why memory mapping has not been popular

with databasedesigners. Among the most notable of thesereasonsare [SZ90a, p. 90]:

� Operating systems typically provide no control over when the data

pages of a mapped �le are written to disk, which makes it impossible

to use recovery protocols like write-ahead logging [RM89] and sophis-

ticated buffer management [CD85].

� The virtual addressspaceprovided by mapped �les, usually limited to

32bits, is too small to representa large database.

22 Memory Mapping and Single-Level Stores

� Pagetables associatedwith mapped �les can becomeexcessivelylarge.

Thesecriticisms, while valid in the past, are no longer as strong now. The rebuttals

to thesecriticisms, aspointed out in [CFW90], are:

� Newer operating systems,such asMach [TRY
�

87] and SunOS[Sun90],

are considerably more liberal in what they allow users to do with the

underlying virtual memory system. Mach provides user-level facilities

to better control when the data pagesof a mapped �le are written back.

� The addressspaceprovided by 32 bits, while not excessively large, is

suf�cient for many emerging and traditional applications. Addition-

ally, processorswith larger virtual addressspaces(up to 64 bits) have

become commercially available, e.g., the MIPS R4000[Mip91] and the

DEC Alpha [Sit92] microprocessors.

� Memory managementschemesarebecoming moresophisticated sothat

less memory is used for page tables. For example, some implementa-

tions employ N-level paging and page tables that are smaller than the

size of the area they map, by using subscript checking before indexing

the page table [RKA92].

Using memory mapping to implement a single-level storeoffers a number of advantages

that signi�cantly simplify the development of �le structuresin complex design environ-

ments, such asCAD/CAM systems.Theseadvantagesare described in detail in section

2.2.2,and clearly outweigh any disadvantagesof memory mapping described in section

2.2.3.

2.2Memory Mapping and the EPD Approach 23

2.2 Memory Mapping and the EPD Approach

As illustrated in Figure 2.2,memory mapping is the technique of using the underlying

hardwar e and software architectural support for virtual memory to map some portion

of the secondary storage(e.g.,a disk �le) into the virtual addressspaceof a program, so

that the data stored on secondary storagebecomesdir ectly accessibleby the processor's

instructions. Oncemapped, the secondarystoragedata hasa one-to-onecorrespondence

with its image in virtual memory.

SecondaryStorage

FILE

Primary Storage Virtual Memory
Support

object
arbitrarily complex

Figure 2.2:Memory Mapping

The concept of virtual memory has been expounded upon in detail in the literatur e

(see[Den70]) and a basic understanding of virtual memory is assumed in this disserta-

tion. Virtual memory capabilities and their accessibility vary substantially among dif fer-

ent computer architectures. In general, there are two major capabilities: segmentation

and paging, which can be used independently or together. A segmentis a variable sized

contiguous areaof virtual memory with a �xed starting address,usually 0. This starting

addressis called the virtual zero. Conceptually, a segment is a set of contiguous pages

in virtual memory, where a page is a �xed size range of virtual addresses.The physical

memory analogueof a virtual memory page,called a memory frame, is a �xed sizerange

24 Memory Mapping and Single-Level Stores

of contiguous physical memory locations. Pagingis the ability to map a non-contiguous

setof physical memory frames onto a contiguous setof virtual memory pages.

Depending on the system capabilities, memory mapping can map a �le structure

into a new segment or into a portion of an existing segment. Becausethis work adopts

the EPD approach to memory mapping, a �le structure is mapped into its own dedi-

cated segment;otherwise the mapping cannot be guaranteed to start at the samevirtual

addresseachtime the �le structure is mapped, and memory pointers embedded in per-

sistent data cannot be used to accessthe referent data without �rst being relocatedor

swizzled(addressconsistency problem). The ability to store dir ect memory pointers to

relate data in a �le structure and to use thesepointers, without modi�cation, to access

the referent data is essential to the design presented in this dissertation. Demand seg-

mentation and paging, the abilities to copy only those pagesof a segment into primary

storage that are referenced during execution, are also essential to this design becausea

�le structure is almost always larger than the primary storagecapacity of the machine.

Notice that demand paging conceptually performs the function of a traditional buffer

manager, except that the buffering is implicit and tied into accessat the instruction

fetch/stor e level. Ideally, dif ferent page replacement algorithms are required for dif-

ferent kinds of accesspatterns to achievemaximum ef�ciency , but the desired ef�ciency

is possible with relatively few dif ferent page replacement schemes[Smi85]. Although

commercial operating systemshave traditionally supported a single system-wide page

replacement scheme,many systems are beginning to provide tools that allow applica-

tion programs to in�uence the underlying page replacementstrategy. In addition, some

research projectsare building operating systemswith specialized paging support geared

towards persistent systems.

2.2Memory Mapping and the EPD Approach 25

2.2.1 Non-Uniform AccessSpeed

When constructing a memory mapped �le structure, it is imperative to understand that

certain accessbehaviours can be expensive. While the contents of a �le structure are

made dir ectly accessibleto the processor, the accessspeed is non-uniform – when the

pagecontaining a referencehasto be read in, a long delay occursasfor a traditional disk

read operation, otherwise the reference is dir ect and occurs at normal memory speed.

Non-uniform accessis an aspectof performance that a �le structure designer will never

be able to control in its entirety as the use of memory mapping involves a deliberate

decision to let the operating system be in control of the demand aspectof segmentation

and paging to make ef�cient useof primary storageand other system resources.Unless

dif ferent page replacement schemescan be selected by individual applications, a �le

structure designer can, at best, in�uence the effects of paging by controlling the man-

agementof primary storageand, to a lesserextent, by controlling disk allocation. While

this lack of control seemslike a fundamental �aw , experimental work has shown that it

presentsfew practical problems, except for certain specialized accesspatterns, depend-

ing upon the particular page replacement strategies available. The problem is further

mitigated by advancementsin the operating system technology mentioned earlier.

2.2.2 Advantages

The following are some of the bene�ts that are derived from using single-level stores,

especially memory mapped stores,to build �le structuresand their accessmethods.

Uniformly Accessible Data: The dichotomy resulting from maintaining two disparate

views of data in traditional programming systems has been mentioned earlier.

Pointers embedded in a data structure must be transformed in order to be com-

patible with secondary storage before they can be stored and the reversemust oc-

26 Memory Mapping and Single-Level Stores

cur during retrieval. For example, a CAD/CAM designer may want to store data

organized in the form of a CSGtree[Req80] on a conventional �le system,e.g.,the

UNIX �le system. The accessmethod designer must devise ways of expressing

the CSGtreein the form of a stream of bytes, and either graph operations execute

on this stream of bytes emulating a graph, or the primary memory graph must

be regeneratedduring retrieval. Both approachesresult in signi�cant overhead in

terms of program complexity and execution time. A single-level store greatly re-

duces and even eliminates thesede�ciencies by allowing the use of programming

language constructs for organizing persistent data. No conversion of primary stor-

agedata structuresis necessaryto store them on secondary storage,which results

in signi�cantly impr oved performance.

A Single Pointer Type: Single-level storesbasedon pointer swizzling schemespresent

a uniform view of all data to an application program but thesesystemsuse dif fer-

ent formats for pointers to persistent and transient data; the conversion of pointers

from one form to the other is transparent to the executing program. In the EPD ap-

proach, however, normal memory pointers are stored dir ectly on secondary stor-

agewithout any transformation, and used subsequently to accessthe referent data.

When pointers to persistent data are dereferencedduring execution of a program,

the I/O necessaryto bring the referent data into primary storageoccurs implicitly

through the virtual memory mechanisms.

For rather simple data structures,like a B-Tree,the elimination of pointer swiz-

zling doesnot result in a major performance impr ovement. However, for complex

data structures,such asgraphical objectsin a CAD/CAM systemor in a geograph-

ical information system, where a large proportion of the data consistsof pointers,

there is a signi�cant performance advantage resulting from the elimination of the

2.2Memory Mapping and the EPD Approach 27

transformation of pointers from one format to the other.

Elimination of Explicit Buf fer Management: Ef�cient buffer management is crucial for

the performance of a traditional databasesystem and writing a good buffer man-

ager is complex. Further, given the availability of a buffer manager, a �le struc-

ture designer must be skilled in its usageto achieve good performance, explicitly

invoking the buffer manager's facilities correctly, possibly pinning/un-pinning

buffers, which results in code that is complex and dif �cult to write, understand

and maintain.

In a memory mapped system, all data is implicitly buffered, with the I/O be-

ing done by the underlying operating system. This model of I/O results in signif-

icantly lesscomplex accessmethods. I/O management is completely transparent

and is handled at the lowest possible level, where it has the potential to have the

greatesteffect on the overall ef�ciency of the system,particularly on a shared ma-

chine.

Unfortunately , most contemporary operating systemsdo not allow an applica-

tion to selectits own pagereplacementstrategy. This lack of choicenulli�es the ad-

vantage of memory mapping for somespeci�c applications. However, subsequent

resultswill show that, in general, the buffer managementprovided by a typical op-

erating system page replacement algorithm produces results that are comparable

to a hand-coded buffer-manager for a number of varied accesspatterns.

Simple Localization of Access: The apparent dir ect accessof all memory locations im-

plies that any data structure can be stored on secondary storage. This feature,

which gives a falsesenseof control to the �le structure designer, and coupled with

non-uniform accessof locations can result in data structuresthat are not appropri-

ate for the memory mapping (or any other) approach from a performance view-

28 Memory Mapping and Single-Level Stores

point. The main design criterion for constructing memory mapped accessmeth-

ods is localization of data access.While locality of referencesis crucial for all data

structureswhere accessis non-uniform, memory mapped accessmethods can eas-

ily take advantage of it by controlling memory layout. Simple changesto mem-

ory allocation strategies can produce signi�cantly better performance in memory

mapped accessmethods due to localization of accesses.

Becausethe data structureson secondary storage can be manipulated dir ectly

by the programming language, tuning for localization is straightforwar d. Also,

this capability provides a wider spectrum of choicesfor the designer. A trade off

between complexity (of increasing locality of references)and performance can be

exploited to achievea desirable balance.

Rapid Prototyping: By relieving the �le structure designer of the responsibility of deal-

ing with two dif ferent views of data in essentially two dif ferent environments, a

�le structure can be reliably constructed in a shorter period of time. The �le struc-

turesdiscussedlater in this dissertation were constructed and debugged quickly .

Building a �le structure basedon the EPD approach is further assistedby the

ability to useall the available programming language tools. For example, language

polymorphism can be exploited to reuseexisting code, and an interactive debug-

ger canfacilitate quick detection of errors. When debugging, it is possible to exam-

ine secondary storagedata aseasily and ef�ciently asprimary storagedata. Other

programming language tools suchasexecution and storagemanagementpro�lers,

and visualization tools are also dir ectly usable for secondary storagedata.

Better Utilization of a Shared System: In memory mapped systems, all I/O is per-

formed by the underlying page replacement algorithm, which allows the oper-

ating system to be fair to all users and to dynamically respond to the system load

2.2Memory Mapping and the EPD Approach 29

both from databaseand non-databaseaccess.When the system load is light, it is

perfectly reasonableto allow large portions of the databaseto reside in memory.

During times of heavy load, databaseapplications share available resourceswith

other applications. In traditional databasesystems,the buffer manager is often in

con�ict with other usersof the machine, holding resourcesit is not currently using

when accessto the databaseis low.

In general, accessmethods built using memory mapping cannot make guaran-

teesabout absolute performance during execution on a shared system any more

than traditional accessmethods and buffering strategiescan. In both cases,state-

ments about performance are only valid if there are no other applications running

on the machine. In reality, most databasesystems share the machine with other

applications that affect performance in unpr edictable ways. It is my contention

that tying �le accessinto the paging mechanism allows better overall system re-

sourceutilization and that memory mapped accessmethods have the potential to

achievebetter performance on a shared system than traditional databasesystems.

This assertion is basedon the fact that the operating system has knowledge about

the entire state of the machine, and therefore, has the potential to make informed

decisions to achieve good overall performance. Further, memory mapped access

methods can immediately bene�t from any extra memory that becomesavailable

in the system,even on machineselsewhere in the local-areanetwork [FMP
�

95].

Improved Support for Large Objects: Memory mapping provides the �le structure de-

signer with a contiguous addressspaceeven when persistent data is not stored

contiguously, which means that a large single object may be split into several ex-

tents on one disk or several disks and the application does not need to be aware

of this splitting. In traditional systems, the buffer manager has to be designed to

30 Memory Mapping and Single-Level Stores

explicitly support this seamlessview of individual objects in a �le structure con-

sisting of non-contiguous �xed-size blocks on secondary storage.

Further, systems based on conventional pointer swizzling schemesare con-

strained to read at least a whole object. An entire object must become memory-

resident when a pointer to it is dereferencedin order to maintain integrity of refer-

encesto persistent objects.In virtual memory basedsystems,partial objectscanbe

memory-r esident; only thosepagesof a multi-page object that are referencedneed

to be read into virtual memory resulting in a signi�cant performance advantage

for applications that make sparseuse of large objects.

Elimination of Double Paging: In traditional systems, the buffer management pro-

vided by the databasesystem can be at odds with the underlying virtual memory

management of the operating system. This con�ict can result in excessiveand un-

necessaryI/O, unlessfacilities are provided to instruct the operating systemnot to

managethe buffer spacein virtual storage. Not all operating systemsprovide such

a facility nor will they guarantee to honour such a request. In a memory mapped

system this problem is eliminated.

Pointer Arithmetic: An important advantageof the EPDapproachfor building asingle-

level store is the ability to perform normal pointer arithmetic on pointers to per-

sistent data structures.While all programs may not need to perform pointer arith-

metic, certain specializedstoragemanagementschemesrequire this capability. The

fact that pointer arithmetic works on persistent data structures in a manner sim-

ilar to data structures in primary memory illustrates the level of transparency in

the single-store provide by the EPD approach.

2.2Memory Mapping and the EPD Approach 31

2.2.3 Disadvantages

Rigid PageReplacement Schemes: Commercial operating systems have tended to be

quite in�exible in terms of allowing application programs to control the page

replacement strategy used. Typically , a single system-wide page replacement

scheme,usually a variant of the LRU scheme, is employed. While LRU is quite

suitable for a wide variety of accesspatterns, it can result in excessivepaging un-

der certain circumstances,e.g.,when it is known in an algorithm that a page will

never beused again, the LRU schememust still let the pageagebefore it becomesa

candidate for removal. This problem canberemoved to a largeextent by providing

operating system facilities that allow an application to in�uence pagereplacement

decisions taken by the operating system. Operating system designers are begin-

ning to take notice and some application level control over page replacement is

already available in a few commercial operating systems,most notably the Mach

operating system.

Timing of Dirty PageWrite Back: Another major irritant with conventional operating

systems is the lack of control over the time at which modi�ed (or dirty) pages in

the virtual spaceof an application are written back to disk. Premature writing

of dirty pages in the middle of a transaction results in the data on disk being in

an inconsistent state,which increasesthe dif �culty of implementing transactional

support for memory mapped systems. One suggested solution to overcome this

dif �culty is basedon pagecomparing techniques. The basicidea is to keep a before

copy of all pages that need to be modi�ed during a transaction. When the trans-

action commits, the current state of the modi�ed pages is compared against the

before copiesand any dif ferencesare used to maintain recovery logs. This issue is

discussedfurther in chapter 6.

32 Memory Mapping and Single-Level Stores

2.3 Survey of Related Work

The earliest use of memory mapping techniques can be found in the Multics system

[BCD72]. However, earlier operating systemswerenot �exible enough to allow exploita-

tion of memory mapping techniques in a serious manner. In recent times, with the de-

velopment of more open systems,a number of efforts have been made to use memory

mapping. The following discussion covers salient work on memory mapping aswell as

work on single-level storesin general.

2.3.1 Software Approaches Basedon Conventional Architectures

In thesesystems,the emphasis is on using software systemsto build a single-level store

without requiring new hardwar e and making no or little changesto the operating sys-

tem kernel. The main advantages of following this approach are simplicity , cost effec-

tiveness,immediate availability on existing architectures,and wide applicability . On the

other hand, there are certain aspectsof building a single-level store that are dif �cult or

inef�cient to implement without the availability of specialized hardwar e or operating

system support. Nevertheless, the convenienceof the software approachmakes it an at-

tractive pursuit, particularly in view of recentand imminent advancementsin hardwar e

and operating system technologies. The experiencesgained by pursuing the software

approach also provide valuable input in the design of desired features for futur e com-

mercial architectures.

While someprojectshave designed new or modi�ed compilers (PS-Algol, E, Object-

Store),many of the systemshave beenimplemented aslanguage (particularly C++) class

libraries that can be linked with applications, and require no special compiler support.

Somesystemssupport orthogonalpersistence[ABC
�

83] implying that the samecompiled

codecanbeused to manipulate both transient and persistent data, and objectsof all data

2.3Survey of Related Work 33

types de�nable in the language can be made persistent. On the other hand, many of the

non-orthogonal systemsprovide a subsetof the bene�ts of orthogonal persistence,e.g.,

a uni�ed type system for all data without considerations of longevity . Finally, somesys-

tems, such as the EXODUS StorageManager, support the concept of object identity at

an additional cost, whereasmost memory mapped systemsdo not fully support object

identity becausenon-garbagecollected memory management is used.

In addition to the systems described below, there are other varied object managers

and storage systems that have been proposed in the last decade, e.g., the O2 Object

Manager [D
�

91] and the GemStonedatabasesystem [BOS91]. The emphasisand design

of these systems is, however, quite dif ferent from my work and, as such, they are not

described here.

PS-Algol / POMS

PS-Algol [PS-87] was the �rst effort to add persistenceto a conventional programming

language and the Persistent Object Management System(POMS) [CAC
�

84], written in

PS-Algol, can be considered the �rst persistent object system. An implementation of

POMS in the C language [Bro89], called CPOMS, provides the underlying support for

PS-Algol in Unix environments. In POMS,pointers to objectsresident in virtual memory

have a format dif ferent from pointers to objects stored on disk; the former are called

localobjectnumbers(LONs1) and the latter are referred to as persistentidenti�ers (PIDs2).

Although PIDs can be arbitrarily large, in the actual implementation of CPOMS, the

PIDs were the samesize as normal pointers in PS-Algol. PS-Algol's persistencemodel

is basedon reachability (seesection 1.2.3)– all objectsstored in a databaseon disk are

1In CPOMSimplementation, a LON is simply a virtually memory address,called a local address.

2A PID may beasimple offsetwithin a �le for single databaseimplementations or amorecomplex entity,
e.g.,a long pointer that identi�es the disk object in a (single) universe of objectscomprising all objectsstored
on all disks on a network.

34 Memory Mapping and Single-Level Stores

reachablefrom a distinguished object called the root of the database. At the beginning

of program execution, the root object is loaded in virtual memory and assigned to a

global pointer accessibleto all programs. The root object contains pointers (PIDs) to

other objectson disk. When a program tries to dereferencean embedded PID, the system

loads the referent object into virtual memory from disk and replaces(i.e., swizzles) the

dereferencedPID with the LON of the newly loaded object in memory. Thus, all pointers

embedded in an objecton disk arerepresentedby PIDs, whereasfor an object in memory,

the embedded pointers can be either LONs or PIDs. When the program �nishes, all

embedded LONs are converted back (i.e., de-swizzled) to PIDs before the objects in

memory are written back to disk. All of this addresstranslation is handled in software

and is lazy pointer swizzling becausea pointer is swizzled only when it is actually used.

SinceLONs and PIDs co-exist in primary memory, it is necessaryfor the two types of

pointers to be distinguishable. In POMS, this distinction is achieved by using the most

signi�cant bit (MSB)of the pointer �elds; PIDs have a MSBvalue of 1 whereasthe LONs

contain a zero in that bit. At eachdereference,the MSB is checked to seeif the pointer

being dereferencedis a PID or a LON. Thesechecks,called residencychecks, area potential

performance problem. Another problem with the scheme is that an object has to be

loaded in its entirety in order to avoid problems with referential integrity . Also, the size

of the PIDLAM, described next, can become a problem since it contains one entry for

every object.

During program execution, POMSmaintains a two way mapping between LONs and

PIDs to facilitate swizzling and de-swizzling of pointers. The mapping is implemented

in a memory-r esident data structurecalled the PersistentIdenti�er to Local Addr essMap

(PIDLAM), which is a two way index implemented by meansof two hash tables. When

an embedded pointer in local memory is dereferenced,the dereferencing operation does

a residency check and consults the PIDLAM if the pointer is a PID. If an entry for the

2.3Survey of Related Work 35

PID exists, the referent object is already in memory and, therefore,execution can resume

as soon as the dereferenced PID is replaced by the LON of the referent object from the

PIDLAM. If, however, the PIDLAM contains no entry for the PID, the referent object is

fetched from disk and loaded into local memory. An entry linking the PID with the new

LON of the object is added to the PIDLAM, the dereferencedPID is replacedby the LON

and execution continues. In both cases,any subsequent deferenceof the same pointer

�eld continues without delay after the residency checkbecausethe pointer is a LON.

Napier / Brown' s Stable Store

The Napier88 system used a stable store by A. L. Brown [Bro89, DRH
�

92]. Brown's

store is one of the earliest proposals to exploit memory mapped �les for implementing

a persistent store. The store is implemented by mapping a single, �xed length Unix �le

to a single virtual addressspace.The mapping of the �le is done at a �xed virtual zero;

the mapped data in the �le starts at an offset from the beginning of the �le. Since the

mapping occursat a �xed address(EPDapproach),there is no needto relocateor swizzle

memory pointers embedded in the data objects.Brown's storedoesnot support multiple

simultaneously accessiblepersistent stores;all persistent objectslive and are addressed

in a single persistent store. Also missing is support for disk partitioning of the single-

level store. The Napier88 system hassincebeenextended considerably by integration of

concurrency and distribution mechanisms into the system. This extension was carried

out by Munr o [Mun93] as part of his doctoral thesis and is described brie�y in section

6.1.1.

36 Memory Mapping and Single-Level Stores

E / EXODUS Storage Manager

E [RCS93] is a persistent programming language, developed as part of the EXODUS

project at the University of Wisconsin, that relies on the EXODUS storage manager for

providing basic support for objects, �les and transactions. E extends C++ by adding

persistence and some other language features; the latest version of the E compiler is

basedon the Gnu C++ compiler. The support for persistencein E is provided by means

of new data types (called databaseor db types) and a persistent storage class. Any C++

type/class can be de�ned asa db type/class, thereby de�ning the type of objectsin the

database. The persistent storage classprovides the mechanism for storing objects in a

database.In order to persist after a program is run, an object of a db type needsto have

the persistent storage classproperty. Additional language constructs are provided for

manipulation of persistent objects,e.g., the built-in db classcollection[Type] provides a

mechanism for creating and deleting objects in a persistent collection. The support for

persistencein E is implemented in software similar to PS-Algol; each dereferenceof a

pointer incurs a residency check implemented by meansof in-lined code.

The style of persistenceprovided by E is called allocation-basedpersistence; the de-

signers of E rejectedthe notion of reachability (seesection 1.2.3)for reasonsoutlined in

[RCS93]. In E, the persistence of an object of db type needs to be explicitly speci�ed

(either by declaring a persistent variable or by placing the object in a persistent collec-

tion). Another aspectin which E dif fers from PS-Algol and other systemsis its rejection

of orthogonal persistence. Only objects of db types can persist, i.e., E has a dual type

system: objectsof db types maypersist whereasobjectsof normal types are all transient.

One of the implications of this dual approach is that only pointers to db types incur the

costof a run time residency check. Another reasoncited by the designersof E for reject-

ing orthogonal persistenceis the wasted spacethat results by making all pointers long

2.3Survey of Related Work 37

pointers.

Other Language Efforts

In addition to PS-Algol, Napier and E, there have been several other language design

efforts that add persistence to a traditional programming language. One of the more

prominent of these languages is O++ [DAG93, BDG93] based on the Ode/EOS object

manager. O++ is a databaseprogramming language basedon C++ that provides support

for orthogonal persistence. The compiler is implemented as a front end called ofront

that translates O++ code into C++ code to be compiled and linked together with the

Ode Object Manager, which is implemented on top of the EOS storage system. EOS

manipulates data on disk in units of disk pagesand objectsare essentially uninterpr eted

sequencesof bytes with someheader information. One of the important featuresof O++

is its support for making the virtual pointers of C++ persist, i.e., it allows objects with

virtual members to be persistent.

Texas:Pointer Swizzling at PageFault Time

Paul Wilson [Wil91a] has developed a scheme that combines the concepts of pointer

swizzling and run-time pagefaulting to support huge persistent addressspaceswith ex-

isting virtual memory hardwar e. Texas[SKW92] is a persistent store basedon Wilson's

schemeof pointer swizzling at page fault time. In Wilson's scheme, pointers on sec-

ondary store have a format dif ferent from the pointers in primary storage,which allows

for a persistent store that is larger in size than the virtual spacesupported by a given

hardwar e. Wilson's schemerequiresa special page fault handler that is responsible for

swizzling pointers.

The basic strategy is to fetch pagesas opposed to objectsas is done in classical lazy

38 Memory Mapping and Single-Level Stores

pointer swizzling. When a page fault occurs, i.e., the virtual memory hardwar e detects

an attempt to dereference a pointer to a location in a non-resident disk page, virtual

memory for the disk page is allocated (if not done already) and the page is fetched in

memory. An addresstranslation table maintains the current mapping of virtual memory

to disk pages. The table contains one entry per page rather than one entry per object

resulting in a considerably smaller and �xed size table.

During fetching, a disk page is scanned and all embedded persistent pointers are

translated into virtual memory pointers, which requiresknowledge of all pointers. Thus,

memory resident pages in Wilson's schemenever contain persistent pointers, only vir -

tual memory pointers. Extra information is maintained on disk to permit the �nding of

all pointers embedded in data and there is an associatedrun-time costof processingthis

extra information. Furthermor e, objects that cross page boundaries require additional

language support.

For embedded persistent pointers that refer to disk pagesseenpreviously during the

current execution, the translation table is used to swizzle the pointers into correspond-

ing virtual memory values. To facilitate the translation of other embedded persistent

pointers, all the referent disk pages are greedily allocated virtual memory space and

appropriate entries are made in the translation table. However, the disk pagesare not

actually loaded at this time. Thus, the faulting of a single page can result in virtual

memory being allocated for a rather large number of other pages. Someof thesepages

may never be used and, therefore,Wilson's schemecan result in underutilization of vir -

tual space.Wilson has proposed some solutions to theseproblems, such asperiodically

invalidating all the mappings and rebuilding them; however, the solutions increasesig-

ni�cantly the complexity and cost of his basic scheme. For example, if virtual memory

spaceis exhaustedduring execution of a transaction, someof the memory-r esident pages

have to be written back to disk in order to recover virtual memory space. Evacuation

2.3Survey of Related Work 39

of memory-r esident pagesin this manner requiresa signi�cantly complex de-swizzling

process,which results in a serious degradation of performance.

Hybrid Pointer Swizzling

Vaughan and Dearle [VD92] have presenteda hybrid pointer swizzling schemethat re-

tains the salient features of both the lazy swizzling employed by POMS and the eager

swizzling of Wilson's scheme. The hybrid schemesplits the pointer swizzling process

into two phases in order to avoid the problems associatedwith Wilson's greedy vir -

tual memory allocation. The hybrid scheme mandates that persistent pointers be at

least twice the size of virtual memory pointers. The low order bits in a pointer �eld

are used for machine addressing and the extra spaceavailable in a swizzled pointer is

used to maintain some additional information used to simplify the de-swizzling pro-

cess.Pointer �elds in memory-r esident pagescancontain valid virtual memory pointers

to either actual objectsor entries in a memory-r esident translation table; the former are

called fully swizzled pointers and the latter partially swizzled pointers. To dereference

a partially swizzled pointer, the system consults the translation table to seeif the cor-

responding disk page is memory-r esident; if not, a page fault occurs and the disk page

is brought into virtual memory. At this time, eachpointer embedded in the newly read

page is changed to a fully swizzled pointer if it refers to a memory-r esident page, or to

a partially swizzled pointer if the referent page has not yet been fetched into memory.

Dereferencing of fully swizzled pointers proceedswithout interr uption, thereby avoid-

ing the per referencecostassociatedwith lazy swizzling. Sincereferencesto non-resident

pages are not immediately translated into virtual memory pointers, the greedy alloca-

tion of virtual memory is avoided; a disk page is allocated virtual memory only when

actually used. The main additional costswith the hybrid schemeare a special software

dereferenceoperator and the increasedsize (at least double length) of pointers.

40 Memory Mapping and Single-Level Stores

ObjectStore

The ObjectStore DatabaseSystem[Atw90, LLOW91], developed by Object Design Inc.,

is a commercial object oriented DBMS that makes use of conventional hardwar e in con-

junction with an ad hoc pointer swizzling schemefor storing virtual memory pointers on

secondarystorage. The swizzling schemeused is similar to Wilson's schemeexcept that

in ObjectStore,normal programming language pointers are used to refer to persistent as

well astransient objects.ObjectStoresupports simultaneous accessto multiple databases

and individual databasesare allowed to be larger than the virtual addressspace.These

capabilities are achieved by maintaining a mapping between disk pages and the vir -

tual memory addressesassignedwhen the pageswere last memory-r esident. The exact

details of the schemeused by ObjectStore are proprietary 3. However, the QuickStore

system,described below, is believed to use the samescheme.

Every new persistent object in ObjectStore is explicitly created in a particular

database. Individual databasesare subdivided into segments4 and the application can

cluster related objectsby specifying the segmentwithin a databasewhere the new object

is to be created. An inter-databasepointer in ObjectStore is treated dif ferently from an

intra-database pointer. In general, an inter-databasepointer is transient, i.e., it is valid

only during the scopeof the assigning transaction. A persistent inter-databasepointer

needsto be explicitly distinguished and is implemented asa long pointer.

ObjectStore is basedon the client/server paradigm; the server maintains the persis-

tent store and provides all fundamental support servicesincluding concurrency and re-

covery control. The server makesavailable, on demand at page fault time, the necessary

pagesof secondarystorage,which are then mapped by the client into its virtual address

3The description in this section is basedon information obtained from [LLOW91] and [Obj93]

4The term segment in this section refersto a logical sub-division of a larger databaseand doesnot mean
a hardwar e supported segmentasdiscussedin section 1.2.

2.3Survey of Related Work 41

space;the granularity of server transfers can be changed from a page to a segment,with

the latter resulting in enmassetransfer of a complete segment. For eachtransaction, only

those parts of the database(s)that are accessedby the transaction are mapped into the

addressspaceof the client. This strategy intr oducesa restriction on the total amount of

data that canbereferred to by any single transaction. Largeoperations need to bebroken

down into a seriesof smaller transactions.

When a page is mapped into the virtual addressspace,ObjectStore dynamically as-

signs a virtual addresswhere the mapping is to take place. An attempt is made to assign

the addressso that the pointers stored on the server continue to be valid in virtual mem-

ory of the client, which is possible when the page being mapped aswell asall the pages

referred to by pointers embedded in the mapped page can be assignedthe samevirtual

addresseswhere the pageswere last resident. No pointers need to be swizzled in this

scenario and execution can continue as soon as the page is mapped. In all other cases,

the server hasto �nd all the pointers embedded into the pageand swizzle the pointers as

needed,which requiresthat someportion of the type system be available at run time in

order to locateall embedded pointers. ObjectStorekeepsthis information in an auxiliary

data structure called the tag table, which records the location and type of every object in

the database.The tag table is used in conjunction with the databaseschemato locate all

pointers embedded in objectsstored in the page being mapped.

At the end of a transaction, all pages in the client's address spaceare unmapped

and any modi�ed pages are transmitted back to the server; the client blocks until the

pagesare written back to the server's disk(s). Unmapped pagesstay in the client's cache

until room is needed for other new pages. A client cachecoherency schemeis used to

accommodatesharing of pagesby multiple clients. In this aspect,ObjectStore's storage

management is similar to the one employed by the EXODUS StorageManager.

42 Memory Mapping and Single-Level Stores

Cricket

Cricket[SZ90a] is a storage system that uses the memory management primitives of

the Mach operating system [TRY
�

87] to provide the abstraction of a “shared, transac-

tional single-level store that can be dir ectly accessedby user applications” [SZ90a, p.

89]. Cricket follows the client/server paradigm and, upon an explicit request,maps the

databasedir ectly into the virtual spaceof the client application. Cricket usesdir ectmem-

ory pointers and the databaseis mapped to the samerange of virtual addressesso that

pointer modi�cation is unnecessary. However, the mapping takes place in the address

spaceof the application, and hence,only one databaseat a time can be used by an ap-

plication. Indeed, the concept of a disk �le to group related objectsinto one collection is

not supported in Cricket. Cricket takesthe view that everything an application needsto

useis placed in a single large persistent store. The designersof Cricket did acknowledge

the need to support �les and planned on providing an implementation for �les in futur e

work. However, it may be almost impossible to support a truly general implementation

of �les within the framework of Cricket's architecture.

QuickStore

QuickStore [WD94] is a storage system for persistent C++ that is built on top of the EX-

ODUS StorageManager (ESM), offers nearly the samefunctionality as E, makes use of

memory mapping, and performs pointer swizzling at page-fault time similar to Object-

Store. Becauseof its useof ESM,QuickStorehasa client-server architecture with support

for transactions. There are no limits placed on the size of a database;the amount of data

accessibleby a single transaction is limited to the size of virtual memory. The persistent

pointers in QuickStore are the sameasvirtual memory pointers. The value of a pointer

to a persistent object in QuickStore is the virtual memory addressof the objectwhen the

2.3Survey of Related Work 43

page containing the object was last memory resident.

Dereferencing a pointer to a non-resident object causesa page fault to be detectedby

hardwar e causing the QuickStore page fault handler to request ESM to fetch the page

containing the object into the ESM client buffer pool; from there the object is memory

mapped into the virtual addressspaceof the application program for dir ect manipu-

lation. While fetching, the page fault handler performs actions such as swizzling of

embedded pointers before the client application resumes. Virtual memory is greedily

allocated for the page being fetched aswell as for all the other pagesthat are referred to

by embedded pointers. Like ObjectStore, an attempt is made to assign the samevirtual

frames asused previously. If all of the pagescan be assignedtheir old virtual frames, no

swizzling of pointers is needed and the application can resumeexecution. If some disk

pagesget mapped to new virtual addresses,however, the faulted page is scannedand

any embedded pointers that refer to the relocatedpage(s)are updated.

In order to perform swizzling, QuickStore maintains extra information for memory-

resident and persistent data. The main memory-r esident data structure is a table that

keeps track of the current logical mapping from virtual memory frames to disk pages.

This table contains one entry, called a page descriptor, for every page that has been

fetched into memory or is referred to by pointers embedded in memory-r esident pages.

Pagedescriptors contain the virtual memory and disk addressesof corresponding pages.

The page descriptor table is consulted during allocation of virtual memory addressesto

disk pages.

The information maintained on disk for each disk page includes a mapping object

and a bitmap. The mapping object for a disk page,say pi, records the mapping between

virtual frames referred to by pointers embedded in pi and the corresponding disk pages

at the time when pi was last memory resident. The size of a mapping object can vary

and, therefore, the mapping object is not stored aspart of its disk page;instead, a pointer

44 Memory Mapping and Single-Level Stores

to the mapping object is kept in a special �xed-size meta objectstored at the beginning of

the disk page. Thebitmap for adisk pageis maintained by meansof the type information

made available at run time and is used to locateall embedded pointers sothat they canbe

swizzled, if necessary. The bitmap is also stored independently of its disk page because

the bitmap for a disk page is only needed if pagesare relocatedat page fault time.

2.3.2 Architectural Approaches

This sectiondescribesmajor projectson single-level storesother than Multics, which has

beenmentioned before, that focus on memory mapping at the hardwar e and operating

system level. By its very nature, this work takes an entirely dif ferent approach than

the software basedsystemsdescribed earlier. Ar chitectural approachesare signi�cantly

more expensive to investigate and representimportant work that provides insights into,

and hopefully guides the development of futur ehardwar eand operating systemsupport

in commercial systems.

Bubba Database System

The designersof Bubba [BAC
�

90, CFW90], a highly parallel databasesystem developed

at Micr oelectronics and Computer Technology Corporation (MCC), exploited the con-

cept of a single-level store to representobjectsuniformly in a large virtual addressspace.

Cricket borrowed several ideas from Bubba. The focus of Bubba was on developing

a scalable shared-nothingarchitecture, which could scale up to thousands of hardwar e

nodes and the implementation of a single-level store was only a small, though impor -

tant, portion of the overall project. In Bubba,the Flex/32 version of the AT&T UNIX Sys-

tem V Release2.2 was extensively modi�ed to build a single-level store, which makes

the store highly unportable. The programming interface to Bubba is FAD, a parallel

2.3Survey of Related Work 45

databaseprogramming language.

MONADS Architecture

The MONADS project [RK87, Ros90] started in 1976 at the University of Newcastle,

Australia developed a new computer architecture that supports orthogonal persistence

by meansof a uniform virtual memory asone of its central design goals. The MONADS

architectureprovides explicit support for objects,both at the architectural and the system

software levels. The implementation of the MONADS architecture took the route of

employing a combination of hardwar e, microcode and software. The virtual memory in

MONADS is uniformly addressableusing a segment addressingscheme.Segmentsare

essentially arbitrary sizechunks of addressesin a very large virtual addressspace(up to

128bits).

The virtual store in MONADS, unlike many other architectures, is divided into re-

gions called addressspacesand as such is not �at. A non-�at store was motivated by a

desire to make the store asef�cient and �exible asa conventional �le system, which al-

lows related data objects to be grouped together and managed independently of other

groups of objects(seesection1.2).To facilitate ef�cient and easyaddressing,eachvirtual

address in MONADS consists of two components, the addressspacenumber and the

offset within the addressspace. The segment addressing schemein MONADS builds

upon the conventional segmentation schemessuch asthe one used in Multics.

Model for Address-Oriented Software

In [SW92], Smith and Welland intr oduce a concept called address-orientedsoftware to de-

scribe any software that makes use of the valueof memory addressesit references.The

authors further propose a general model of the operations, called address-management,

46 Memory Mapping and Single-Level Stores

such software uses. The model is being used to design a new operating system and

hardwar e that is more conducive to supporting the classof address-oriented software.

The address-oriented services in their model relevant to this work include support for

virtual memory and a persistent object store.

The model proposesa single large persistent addressspace,larger than the address

spaceof the processor. As such, object pointers are not the sameas memory addresses

and addresstranslation must take placebeforea pointer canbedereferenced.At the time

of opening the store, the root objectsof the store are copied into memory and converted

to the memory format. At the sametime, virtual addressspaceis allocated to all objects

that are referencedin the root objects;no physical memory is allocated yet. When a new

object is referenced,it is read into memory using virtual addressesthat have previously

been allocated for the object and new virtual spaceis allocated for all objects that have

referencesin the newly read object. This processrepeatsasthe computation progresses,

as for Texas,ObjectStore and QuickStore.

In the samepaper, Smith and Welland presenteda hardwar e model for implement-

ing their address-managementmodel of address-orientedservicesand describe the im-

plementation of a subset of their hardwar e design in the memory management unit of

the ARM 600,a processorbeing built by Advanced RISCMachines, Ltd. of Cambridge,

England.

Single Address SpaceOperating Systems (SASOSs)

Quite recently, some research has been done on developing a new class of operating

systems called SingleAddressSpaceOperatingSystems(see[CFL93] for a description of

some issues and problems with SASOSs;this section includes a brief relevant discus-

sion). An SASOSis fundamentally dif ferent from traditional operating systems in that

it uses a single global virtual addressspace for all protection domains as opposed to

2.3Survey of Related Work 47

assigning each protection domain (e.g., a UNIX process)its own private virtual space.

The single addressspaceapproach has becomeviable with the commercial availability

of workstations with large virtual addressspacesbecauseit is now realistically possible

for all computation on a node to occur within a single addressspace.The global address

spaceis shared by all threadsexecuting on the system. Thus, all threadswork with the

samevirtual to physical mapping of addressesand any virtual addressin the systemcan

be dereferenced by any thread. Accessto data, however, is determined by the thread's

protection domain.

The goal of an SASOSis not to provide persistencebut to facilitates sharing of the

transientaddressspace;in somesense,an SASOSdoesfor transient data what � Database

doesfor persistent data. Nevertheless,SASOSshavesomerelevanceto this work because

of their promotion of EPD and the use of large virtual addressspaces.One of the best

known SASOSsis Opal [CLBHL92, CLFL94] developed at the University of Washington.

Opal is built on top of the Mach operating system and thus, co-existswith UNIX. The

virtual memory allocation unit in Opal is a virtual memory segment, which is a vari-

able sized set of contiguous virtual memory pages. Opal supports recoverableas well

as distributed virtual memory segments. Upon allocation, a virtual memory segment

is assigned a unique range of addressesin the global addressspacein order to avoid

addresscon�icts in the event of sharing. One of the major similarities between Opal and

� Database is support for sharing of pointer -baseddata structures. � Database facilitates

sharing via the EPD approach to persistence,whereasin Opal, the use of a single ad-

dressspaceallows independently developed tools (e.g.,editors and debuggers) to pass

and manipulate transient pointer -baseddata structures.

48 Memory Mapping and Single-Level Stores

Grasshopper Operating System

The Grasshopperoperating system [DdBF
�

94] is an attempt to develop an orthogonally

persistent operating system that runs on conventional hardwar e. The desire to develop

a new operating system is motivated by the fact that it is often inef�cient or too hard to

build an orthogonal persistencesystemon top of a conventional operating systemdue to

their fundamentally dif ferent natures. A persistent operating system like Grasshopper

removesthis inef�ciency by providing support for orthogonal persistencein the operat-

ing system itself. Nevertheless, there are somelimitations that remain due to the lack of

required featuresin conventional hardwar e.

The fundamental abstractions used in Grasshopper to support orthogonal persis-

tence are called containers(storage), loci (computation) and capabilities (accesscontrol).

The three abstractions are orthogonal in nature and, as such, can be applied indepen-

dently. Grasshopper adopts a fully partitioned addressspace model, i.e., there is no

global addressspace.Instead, there are fully independent addressspaceseachof which

canbearbitrarily sized. Processesexecutewithin oneof theseaddressspaces(hostaddress

space) and accessis limited to data stored within the host addressspace.Further, the con-

ventional associationof addressspaceswith processesis non-existent becauseprocesses

(loci) areorthogonal to addressspaces(containers). A Grasshoppersystemcontains a set

of addressspacesand a setof loci executing within the setof addressspaces.A locus can

executein and accessdata stored within one container at a time. Unlike other operating

system designs, loci or processesin Grasshopper are inherently persistent. The orthogo-

nality of loci and containers facilitates support for multi-thr eadedprogramming because

a number of loci canexecutewithin one container simultaneously. Finally, accesscontrol

over containers and loci in Grasshopper is capability based.

2.3Survey of Related Work 49

IBM RS 6000and AS/400

Malhotra and Munr oe [MM92] have proposed schemesto support persistent objectson

the architectures of IBM RS/6000 and IBM AS/400 computer systems. Both thesesys-

tems incorporate support for single large virtual memories that are subdivided into seg-

ments, although segmentshave slightly dif ferent semanticsin the two systems.The au-

thors argue that using virtual memory referencesto accessobjectsis both more ef�cient

than other approaches,including swizzling, and easierto implement sincethe operating

system doesmost of the work.

Recoverable Virtual Memory

Thatte [Tha86] has described a persistent memory system basedon a uniform memory

abstraction for a storagesystem in which both transient and persistent objectsare man-

agedin auniform manner. Thememory is viewed asacollection of variable sizeblocks of

consecutiveaddresses,in a single large virtual space,interconnectedwith virtual mem-

ory pointers. Reachability (seesection 1.2.3)is used for the persistent model; an object

in the virtual spacepersists as long as it is reachable from a persistent root. Thatte's

proposal includes a recovery schemeat the level of virtual memory itself becausehis

schemeassumesno separate�le system.

In [Kol90], Kolodner presentsa critique of Thatte's persistent memory and proposes

an alternative scheme.

Camelot Distributed Transaction System

The Camelot project [STP
�

87] used the memory management facilities of the Mach op-

erating system to provide a single-level store. However, the store was not dir ectly acces-

sible to the application processesbut was to be used within a “data server” for storing

50 Memory Mapping and Single-Level Stores

persistent data. In this regard, Camelot dif fers from Cricket and the approach I have

developed lies somewhere between thesetwo extremes.

IBM' s 801prototype hardware architecture

IBM's 801architecture [CM88] incorporated an operating system that provided mapped

�les with automatic concurrency control and recovery. Themajor shareof the support for

operations on mapped �les was provided by adding special hardwar e, which resulted

in a solution lacking both �exibility and portability .

Clouds Distributed Operating System

The Clouds project [DLA87, PP88,DC90] was an attempt to build a general purpose

distributed computing environment for a wide variety of user communities. An “ob-

ject” in Clouds is the fundamental entity used to build the system. A Clouds object is

conceptually a persistent virtual spaceand lightweight threadsareused to perform com-

putations through code stored in objects.The persistent objectsand threads,give rise to

a programming environment composed of a globally shared permanent memory.

2.3.3 Others

The following are some other interesting efforts at exploiting mapped �les and single-

level stores. The focus of these works is quite dif ferent from my work, and they are

described here for completeness.

� Someother notable projectsthat proposed new architectures to addressproblems

faced by persistent programming community include EOS, an environment for

object-basedsystems [GADV92] and work done on Choices, an object-oriented

operating system [CRJ87, RC89, MC92].

2.4Summary 51

� Inohara, et al [ISU
�

95] describe an optimistic page-based concurrency control

schemefor memory mapped persistent object systems.

� Peter van Oosterom [vO90] used shared mapped �les to intr oduce persistent ob-

jects in the object-oriented programming language Procol [vdBL89] as part of his

Ph.D. thesis on reactive data structuresfor Geographical Information Systems.

� The Hurricane Operating System[SUK92] is a shared memory multi-pr ocessorop-

erating system that runs on The Hector Multipr ocessor[VSWL91] and usesmem-

ory mapping to implement its �le system.

� Orran Krieger, et al [KSU91] describe a stream I/O interface for Unix using mem-

ory mapping facilities.

2.4 Summary

This chapter presentedthe raisond'être for this work: how a single-level store basedon

the EPD approach is bene�cial for managing persistent data. An extensive survey of all

major software and architectural approachesto building persistent systemsis presented

as background material for the design of an EPD based system presented in the next

chapter. The software approach to building EPD persistent storesimposes somerestric-

tions on what can be achieved realistically and ef�ciently , but it provides an excellent

opportunity to explore new ideas and to establish a solid framework in which theseand

other related ideas can be evaluated and analyzed.

Chapter 3

Using the EPD Approach to Build a

Single-Level Store

As stated earlier, this work hasresulted in the design and development of a toolkit called

� Database to implement the EPD approach to memory mapped persistent stores on

conventional hardwar erunning the UNIX operating system. � Database hasbeenused to

study a number of sequential and parallel accessmethods. Also, a theoretical framework

hasbeenestablishedby meansof an analytical model of computation in � Database. This

chapter presentsall thesecontributions in detail.

3.1 � Database Design Methodology

The design methodology developed as part of this work provides the necessaryenvi-

ronment to build ef�cient �le structuresand their accessmethods in a memory mapped

environment basedon the EPD approach. As stated earlier, a toolkit approach has been

adopted, which allows �le structure designers to participate in someof the design activ-

ity; � Database allows extensible additions or simple replacement of low-level compo-

nents by �le structure designers. While � Database sharesthe underlying principles of a

single-level storewith other proposals[CM88, CFW90,SZ90a, LLOW91, STP
�

87,WD94],

53

54 Using the EPD Approach to Build a Single-Level Store

it offers featuresthat make it unique and an attractive alternative. � Database is intended

to provide easy-to-useand ef�cient tools for developing new databases,and for convert-

ing and maintaining existing databases.It also ful�lls a needfor a setof educational tools

for teaching operating system and databaseconcepts. The design is basedon some im-

portant decisions,described next, that were made at the outset of this work.

3.1.1 Design Objectives

Employ the EPD approach to memory mapping. � Database develops and exploits the

EPD approach so that an arbitrary programming language data structure can be

stored on secondary storage as is; neither restructuring of data nor pointer swiz-

zling is required for accessingand manipulating the data structure. In the caseof

a B-Tree,for example, the treestructure can be stored in its entirety on disk using

programming language pointers, to be retrieved and navigated at a later date. The

routines for performing B-Treeoperations in primary storage are used dir ectly on

persistent data, which allows conventionalprogrammingtechniquesfor datastructures

that happen to be stored in a �le. The absenceof any transformation of pointers

has a bene�cial impact on execution costs.

Retain conventional user interfaces. A deliberate design decision was made to retain

the conventional semantics of openingand closinga �le. A �le structure must be

made accessibleexplicitly becausethe �le content is not dir ectly accessibleto the

processor(s)until it is memory mapped, and therefore, this aspect should be re-

�ected in the semantics of the constructs and not hidden by making the �le im-

plicitly accessibleat all times. Like pointer -swizzling, there is some problem with

ef�ciently detecting the �rst accessto a �le structure so that the additional data

structuresneeded during accesscan be created. However, the most dif �cult prob-

3.1 � Database Design Methodology 55

lem with implicit accessis knowing when the accesscan be terminated, which is a

particular concern with concurrency control.

Use light-weight threading. To provide highly concurrent accessto the �le structures,

it was decided to use a concurrent shared-memory thread library as the basis of

the design. This decision ensured that concurrency issueswere dealt with starting

at the lowest levels of the design, thereby avoiding the problems associatedwith

trying to add concurrency post hoc on an inherently sequential design.

Provide library of routines. The current implementation of � Database is designed asa

multi-level modular system, based on the toolkit approach, with each level per-

forming a particular aspectof the overall system. The system is available asa C++

library that can be linked with user applications. This route was preferred, at least

for the present,over making language extensionsvia a new front end parser or a

modi�ed compiler.

Use conventional hardware and software. � Database follows the software approach

of building a persistent store on top of conventional hardwar e and operating sys-

tem. It is oneof the fundamental goalsof this work to basethe design on astandard

commercial architecture while keeping the design �exible enough to copewith ad-

vancesin architecture design. This decision makesthe research immediately avail-

able to theoreticians and practitioners alike. Also, the useof a standard system has

highlighted certain problems that need to be addressedat the architecture level

before memory mapped systemscan becomemainstream.

Multiple simultaneously accessibledatabases. � Database allows individual applica-

tions to simultaneously accessmultiple �le structures or databases. Conversely,

multiple applications can share the same�le structure. This decision has been in-

56 Using the EPD Approach to Build a Single-Level Store

�uenced by the recognition of the merits of a world view that tends to relateobjects

by their functionality and groups related objectstogether. Groups of functionally

related objectsare shared freely among applications in this world view while pro-

viding the necessaryabstraction, protection and ef�ciency . The current scope of

� Database doesnot cover inter-databasepointers, only intra-databasepointers are

fully implemented.

Reachability does not extend to world view. Many current systems (e.g., Cedar, Lisp,

Smalltalk, PS-Algol, Napier) use reachability as the fundamental mechanism that

determines the persistenceof data. Conceptually, reachability can be applied as

easily locally, to determine persistenceof data items within a single program or

process,as globally, to determine persistenceof data that is independent of pro-

grams, such asconventional �les and databases.This feature permits special pro-

gramming language constructs, such as�les, databases,dir ectories,namesspaces,

etc., to be replaced by simpler arrays or linked-list structures. However, reacha-

bility placescomplex storage-managementrequirements[BDZ89] on the �le struc-

turedesigner. As explained in section1.2.3,instead of reachability, � Database uses

the notion of a separatepersistent area, in which data objectsare built or copied

if they are to persist. Reachability has also been rejected by some other systems

described earlier, e.g., E and ObjectStore provide a style of persistencesimilar to

that of � Database.

The world is not �at. � Database envisions a pragmatic non-�at view of the world. The

persistent store in � Database consists of a collection of �les stored in a conven-

tional �le system. To becomeaccessibleto a program, each�le is mapped into an

independent segmentwith its own virtual space.Thus, eachinter-segmentpersis-

tent addressin � Database is conceptually divided into a handle for a conventional

3.1 � Database Design Methodology 57

�le (e.g., the Unix �le name) and an addresswithin the virtual spacecorrespond-

ing to the �le. This model extends to a hierarchical address,including machine or

node id on which the �le structure resides.

Separate transient and persistent data. Data associated with accessingthe �le struc-

ture, such as traversal locations in the structure, are not mapped in the �le struc-

ture. This organization facilitates performance and recovery after system failur e

by ensuring that this data is never written to the disk.

Finally, persistence in the current implementation of � Database is not orthogonal

becauseof the restrictions imposed on the useof persistent and transient pointers. How-

ever, � Database provides someof the featuresand bene�ts associatedwith an orthogo-

nal persistencesystem. For example, creating and manipulating data structureswithin a

persistent areais the sameasin a program, i.e.,all data within a persistent areais treated

uniformly irr espectiveof its longevity , which meansthat codewritten for primary mem-

ory data structurescan be used, without re-compilation, to manipulate persistent data.

3.1.2 Basic Structure

In order to simplify the speci�cation of �le structures,object-oriented programming tech-

niques are used in the implementation of � Database, but are not essential; an imple-

mentation may be done in a non-object-oriented programming language. C++ [ES90]

is used as the concrete implementation programming language. The constructors and

destructors in C++ eliminate the need to have explicit initializations and clean ups, and

allow an implementor to make certain assumptions about correct usage (e.g., pre- and

post-conditions). Concurrency facilities employed by � Database are provided by � C++

[BDS
�

92], which is the preferred implementation language for writing accessmethods

58 Using the EPD Approach to Build a Single-Level Store

in � Database. � C++ is a superset of C++ with concurrency extensions. However, the

fundamental ideas are implementable in any imperative programming language.

The design involves several levels, eachperforming a particular aspectof the storage

or accessmanagement of the �le structure. The design structure is illustrated in Figure

3.1and the components at eachlevel are discussedbelow in detail.

primary

disk �le

secondary
storage memory persistent

volatile
storage

mapping

representative

accessor1 accessor2 accessor3 accessor4 �le structure
implementor

or user
databaseimplementor

application 1 application 2

Figure 3.1: � Database Design Methodology: BasicStructure

3.1.3 Representative

To allow virtual memory pointers to bestored in the �le structureand subsequently used

without modi�cation, the system maps each�le into its own segment. None of the op-

erating systemsavailable for this work provide the facility of segmentation even when

the underlying hardwar e is capableof supporting such a facility . To overcome this de�-

ciency, � Database mimics a segment by using a UNIX process.The disk �le is mapped

into the virtual spaceof the UNIX processstarting at a �xed memory location, called

3.1 � Database Design Methodology 59

the SegmentBaseAddress. The segmentbaseaddressis conceptually the virtual zero of a

separatesegment. In the current implementation, the value 16M has beenchosenasthe

SegmentBaseAddr ess,which leavesa suf�ciently large spacefor the process'stransient

data and program code. In an ideal situation, where independent creation of new vir -

tual memory segmentsis allowed, eachdisk �le would bemapped into its own segment;

separatesegmentsare possible, at least at the hardwar e level, on the Intel 386/486, IBM

RS/6000 and the IBM 400seriescomputers.

The object that managesthe segment is called its representativein � Database, and it

is responsiblefor the creation and initialization of the �le structure, the storagemanage-

ment of accessmethod data in primary storage,concurrent accessesto the �le structure's

contents, consistencyand recovery. Each�le structure has a unique representative. The

representative is created implicitly on demand, during creation of a �le structure and

for subsequentaccessby a user application, and it exists only as long as required by ei-

ther of theseoperations. Thus, the representative for a �le structure is createdwhen the

�rst accessrequest is received for the �le structure and terminates when all the access

requestshave completed. For eachapplication program, there is a one to one correspon-

dence between a �le structure and its representative, i.e., at any given time there is at

most one active representative for a �le structure irr espectiveof the number of dif ferent

tasksaccessingthe �le structuresimultaneously (asthe scopeof � Database is expanded,

there will be only one representativeper �le structure acrossan entire system).

A representative's memory is divided into two sections: private and shared; Figure

3.2illustrates this storagestructure. Private memory can only be accessedby the thread

of control associatedwith the UNIX processthat created it, i.e., the representative. The

persistent �le structure is mapped into the private memory of the representativewhile all

data associatedwith concurrent accessto the �le structure is contained in the represen-

tative's shared memory; such data is always transient. Shared memory is accessibleby

60 Using the EPD Approach to Build a Single-Level Store

�

SegmentBase
Addr ess

Representative Application

concurrency

control

accessor1� �

accessor2� �

shared
memory

�

�

�le structure

normally

not used

private
memory

mapping

disk �le

Figure 3.2: StorageModel for the Representative

multiple threadsthat interact with the representative's thread. There is no implicit con-

currency control among threadsaccessingshared memory except at the memory wor d

level where synchronization is enforced by the hardwar e. Mutual exclusion must be ex-

plicitly programmed by the �le structure designer using the light-weight tasking facility

of � C++ [BS90, BDS
�

92]. The light-weight tasking facilities allow virtually any concur-

rency control schemeto be implemented in the representative.

Some operating systems arbitrarily restrict the maximum accessiblevirtual space

size of a process(e.g.,DYNIX has a restriction of 256M), while the hardwar e is capable

of supporting much larger virtual spaces(4G or more). Becauseof the EPD approach

used by � Database, the maximum allowable size of any single �le structure is the maxi-

mum accessiblevirtual spacesizeminus the SegmentBaseAddr ess.For databaseslarger

than the maximum allowed virtual spacesize, it is possible to subdivide the database

3.1 � Database Design Methodology 61

into multiple �les, which the representativecan handle by creating sub-representatives;

however, this strategy increasesthe complexity of the �le structure. With the increasing

number of 64bit processorsbecoming available, the restriction imposed on the database

size is no longer an issue.

It is possible for an application in � Database to have multiple �le structuresaccessi-

ble simultaneously becauseeach�le structure is mapped into its own representativethat

has an independent private mapping area. Figure 3.3 shows the memory organization

of an application using 3 �le structures simultaneously. Sinceeach representative is a

separatesegment,relocation of pointers in a �le structure is never required.

MAP MAP

private shared private
memory memory memory

private
memory

�le 1 �le 3

MAP

�le 2

representative application representative

representative

Figure 3.3: Simultaneously AccessingMultiple File Structures

The effect of mapping eachdisk �le into a dif ferent virtual spaceis to move the ab-

straction of a single-level store from the domain of the application (which is the casein

systemssuchasCricket [SZ90a]) into the domain of the �le structuredesigner. This strat-

egy maycompromise performance and complexity slightly , but any potential loss is sig-

ni�cantly offset by the added protection for the �le structureand the �exibility provided

62 Using the EPD Approach to Build a Single-Level Store

by multiple accessibledisk �les. Nevertheless, for specialized situations, � Database

makes it possible to have a single �le structure mapped into the application address

space,which allows the application dir ect accessto the �le structure data at the cost of

having only one specialized �le structure accessibleat a time. However, the use of this

facility is intended mostly for temporary data that is generatedby the program doing the

mapping. The design philosophy of � Database discouragesgeneral use of this feature.

The representative for a �le structure partitioned across multiple disks works by

mapping the individual partitions into a single addressspacesimilar to single-disk non-

partitioned �le structures.A partitioned �le structureconsistsof a list of UNIX �les each

of which may exist on a dif ferent disk. The representative partitions its addressspace

basedon the list of �les and maps each�le into a partition of its addressspaceasdepicted

in �gur e 3.4. This schememakes many of the details of partitioning transparent to the

application program. One obvious drawback of the schemeis that the size to which each

partition can grow is restricted.

3.1.4 Accessors

The representativeof a �le structureprovides all the low-level support and the �le struc-

ture is “hidden” in that the representative does not provide any dir ect accessto it. The

mechanisms for requesting and providing accessto a �le structure are provided in the

form of another entity called an accessor. Declaration of an instanceof an accessor, called

an accessobject, constitutes the explicit action required to gain accessto a �le structure's

contents (i.e., create the mapping). Creating an accessobject corresponds to opening a

�le in traditional systems but is tied into the programming language block structure.

As well, the accessobject contains any transient data associatedwith a particular access

(e.g., the current locations in the �le structure), while the representativecontains global

transient information (e.g., the type of accessfor each accessor). At least one accessor

3.1 � Database Design Methodology 63

Addr ess

PRIVATE
MEMORY

SHARED
MEMORY

Addr essSpace
Representative

MAP

MAP

MAP

MAP

Disk3

Disk2

Disk4

File1

Disk1

File2

File4

File3

SegmentBase

Figure 3.4:StorageLayout for a Partitioned File Structure

must beprovided for each�le structurede�nition. However, it is possible to have multi-

ple accessors,eachproviding a particular form of access,e.g., initial loading, sequential

access,keyed retrieval. An application can choosethe particular accessorit wants to use

for a given transaction depending upon the type of accessneeded and the functionality

provided by the available accessors.It is also possible to have multiple accessobjects

communicating with the samerepresentative,which allows an application to have mul-

tiple simultaneous views of the samedata, as illustrated in Figures3.1and 3.2.

In order to gain accessto a �le structure, an application program createsan instance

of an accessoravailable for the �le structure. The connection between accessorand �le

64 Using the EPD Approach to Build a Single-Level Store

structure is establishedby passing the �le object to the accessobject. The �le object also

contains a transient pointer to the representative for the �le structure. The accessobject

initiates the creation of the representativeif it doesnot already exist. The execution of the

termination codeof the last accessobject for a �le structure terminates the corresponding

connection to the representative. Further details of the programming interface to the

representativeand the accessorsare presentedlater in section 3.4.8.

Once instantiated, the accessobject can be used by the application to perform oper-

ations on the �le structure by invoking the methods of the accessobject. For example,

in order to read from the �le structure, a call may be made to a method called read()

provided by the accessor. The method read() communicates with the representative, to

perform the desired operation. Depending on the particular kind of concurrency control

requested, the declaration of the accessobject or individual accessobject method calls

may block until it is safeto accessthe �le contents.

Using the techniques discussed earlier, a library of several memory mapped access

methods has been built. Currently, theseaccessmethods are used for comparison pur -

posesamong themselves and with traditional accessmethods, but they will ultimately

provide databaseaccess-methoddesignerswith a starting point for construction of new

databases.The programming interface for the � Database library , �le structuresand their

accessmethods is presentedin section 3.4.

3.1.5 Critique of � Database

A pointer to an object stored in a �le structure can be dereferenced only within the

addressspaceof the �le structure's representative. Therefore, dereferencing an inter-

segment pointer may require the object to be copied out of the representative segment

via shared memory. This copying involves an extra cost but is necessary, in general, to

protect the integrity of the �le structure.

3.2Comparison of � Database with Related Approaches 65

Currently, � Database does not provide support for the virtual pointers of C++ be-

causethesepointers refer to data in the text segment of an executing program and the

referential integrity of thesepointers cannot be guaranteed acrossmultiple invocations

of the program. Virtual pointers are an important mechanism used by C++ to support

inheritance and dynamically linkable code. Partial solutions to this problem have been

reported in the literatur e (see[BDG93]) and can be applied to � Database.

Currently, � Database is based on a shared-memory design and is not distributed.

[RD95b] contains a collection of papers that deal with the issue of distribution in per-

sistent object stores. Further, an object store can be built on top of � Database but in its

current form, � Database doesnot incorporate an object management system.

Many persistent systems make code as well as data persist due to the advantages

that arrive from it. Somesystemseven provide support for making the current state of

execution persistent, i.e., they allow for the current state of a program to be preserved

for resuming at a later time. � Database, in its current form, does not deal with storing

code in the persistent store;seesection 6.3.1for a brief discussion of the issuesinvolved.

3.2 Comparison of � Database with Related Approaches

� Database is more closely related, both in scopeand intent, to the software based ap-

proachesdescribed in section 2.3.1 than to the architectural approachesdescribed in

section 2.3.2.

The basic memory mapping schemeused in Brown's stable store is identical to the

one employed by a single � Database representative. The major dif ference lies in the

fact that Brown's store is �at while the store in � Database consists of a collection of

addressspacesthat all start at the samevirtual zero. Thus, � Database provides support

for multiple simultaneously accessiblepersistent areasfor an application. Both schemes

66 Using the EPD Approach to Build a Single-Level Store

suffer from the same problems insofar as operating system support is concerned, e.g.,

lesscontrol over the time at which dirty pagesare actually written out.

ObjectStore and � Database share many goals and objectives. Someof theseinclude

easeof learning, no translation 1 between the disk-resident representationof data and the

main memory-r esident representation used during execution, full expressivepower of

a general purpose programming language when accessingpersistent data, re-usability

of code and statically type-checked accessto data. In ObjectStore, there is a limitation

on the size of data a single transaction can accesssimultaneously becauseObjectStore

maps only portions of a �le at a given time. In � Database, an entire �le structure is

mapped into an individual segment,which restricts the maximum size of any single �le

structure to be lessthan the virtual spacesupported by the available hardwar e; large �le

structureshave to be split into multiple smaller ones. There is, however, no restriction

on how much data a single transaction can accesssimultaneously. Admittedly , the re-

striction imposed in ObjectStore may be lesssevere than the one imposed in � Database,

especially with small virtual addressspaces. In ObjectStore, all pointers embedded in

a data page may need to be found and relocated when the page is mapped. This prob-

lem is non-existent in � Database becauseeachdatabaseis mapped into a dif ferent vir -

tual spaceand relocation of pointers is unnecessary. However, in � Database additional

copying of data has to occur for inter-segment pointers from the �le structure segment

to the application segment. Someof this copying is unavoidable in any mapped system,

including ObjectStore. Overall, I believe that any additional copying costs will be less

than the total costof doing relocation and, in general, is required to protect the integrity

of the �le structure,anyway.

The ObjectStore server is conceptually analogous to the � Database representative.

1Note that, unlike � Database, ObjectStore only achievesthis goal in the special casewhen it can reload
data into memory where the data was last manipulated; otherwise, pointers must be modi�ed (swizzled).

3.2Comparison of � Database with Related Approaches 67

There is somedif ferencein the treatment of inter-segmentpointers between ObjectStore

and � Database. In ObjectStore, inter-databasepointers can be short-lived (created and

valid during the scopeof a transaction) or long-lived; the former are implemented using

normal virtual memory pointers whereasthe latter are long pointers. It is possible for

ObjectStore to use short-lived normal pointers becausea transaction maps all databases

it accessesinto the same addressspace. � Database, on the other hand, maps each in-

dividual database into its own segment, and, therefore, it must use long pointers for

all inter-databasepointers except for one special �le mapped into the application seg-

ment. Clustering of objects in � Database can be attained by means of simple storage

management primitives.

Cricket is similar to � Database in its use of dir ect memory pointers that are always

mapped to the samelocations in the virtual addressspace,thereby eliminating the need

for relocation. The fundamental dif ferencebetween thesetwo systemslies in their view

of the address space. Unlike Cricket, � Database uses a structured rather than a �at

virtual space. In Cricket, everything that an application ever needsto use must exist in

a single databasewhereas � Database allows the application(s) to group related data in

independent collections that can be used and shared asdesired as long as there are few

data inter-relationships; otherwise, the performance of the system degrades. � Database

builds on top of the concept of �les to provide multiple, individually sharablecollection

areas, and provides for sharing of information stored in �les, with each dif ferent �le

being mapped into its own individual segment.

Texasand similar schemesare clear winners for applications that require extremely

largepersistent addressspaces,larger than the addressspaceof currently available hard-

ware. For applications that do not require persistent address spacesthat are larger

than the virtual spaceof modern computers (32-64bits), the simplicity and ef�ciency

of � Database put it at a distinct advantage over the schemeused by Texas. In other

68 Using the EPD Approach to Build a Single-Level Store

cases,I believe that splitting a very large databaseinto smaller databasesof related ob-

jects is a very good approach simply for organizational reasonswhile eliminating the

need for complicated swizzling mechanisms.

QuickStore usesmemory mapping to create the mapping between virtual memory

frames and disk pages in its client buffer pool. However, its use of memory mapping

techniques is quite dif ferent from the EPD approach followed in � Database. QuickStore

is essentially a pointer swizzling schemethat managesto avoid swizzling the pointers

in somecases,asdoesObjectStore. And like ObjectStore, it has to maintain all the infor -

mation needed by a swizzling system. Also, since it is built on top of another storage

system (EXODUS storage manager), it does not gain from all the bene�ts afforded by a

fully memory mapped implementation.

Texasand QuickStore have many of the same problems as ObjectStore with regard

to dynamic relocation and multiple accessibledatabases,and as such, the critique of

ObjectStore is applicable here aswell. Also, the need to relocatepagesin thesesystems

has the potential of seriously degrading performance for certain accesspatterns.

Systems described in section 2.3.2 make use of new hardwar e and operating sys-

tems and, as such, are usually not portable to other systems. � Database can run on

any UNIX system that supports the mmap system call. Unlike Bubba, the current de-

sign of � Database is basedon a multipr ocessorshared-memory architecture and is not

intended to be used in a distributed environment unless the environment supports dis-

tributed shared memory[SZ90b, WF90] which, I believe, will allow the current design to

scaleup to a distributed environment. The representative in � Database is quite similar

to the Clouds object, except that the representative has its own thread of control while

the Clouds object is totally passive. Also, the focus of Clouds was to build a new operat-

ing system,while � Database is an attempt to make memory mapping ideas available to

databasedesigners in the form of a toolkit that can be supported on any operating sys-

3.3Parallelism in � Database 69

tem that provides support for segmentation. Malhotra and Munr oe make some of the

samearguments that I have made for � Database when it comesto using virtual memory

referencesto accessobjects.Their proposed long object identi�er for the RS6000system

is similar to the one employed by � Database: a long identi�er consistsof a �le id and an

addresswithin the virtual spacecorresponding to the �le. Like MONADS, the virtual

store in � Database is not �at; it consistsof a collection of independent areasasdescribed

in section 3.1.1.The segmentation addressingschemeemployed in MONADS is similar

to the one envisioned for � Database. However, due to the nature of the current imple-

mentation of � Database, it is not possible to make useof an addressingschemeidentical

to MONADS.

3.3 Parallelism in � Database

Generally speaking, there are two distinct forms of parallelism that can be exploited in

databasesystems to achieve better performance and functionality . The two forms of

parallelism, asdepicted in �gur e 3.5,are:

Concurrent Retrieval of Data. The slowest link in accessinga �le structure is transfer-

ring data to and from secondary storage. Secondary storage speedsrange from

1,000to 100,000times slower than primary storage. Further, there doesnot appear

to be any imminent technological advancementsthat will signi�cantly reduce this

ratio in speed between secondary and primary storage; in fact, the dif ferencehas

only increasedover the last decade.Therefore, the only approach that is currently

available to impr ove performance is to partition data onto multiple secondarystor-

agedevices and accessthesedevices in parallel. Disk arrays (RAIDs) are the most

common implementation of this idea [PGK88, WZS91]. Once the data is parti-

tioned, signi�cant performance advantage can be obtained by partitioning indi-

70 Using the EPD Approach to Build a Single-Level Store

Concurrent
Accessors

Concurrent

front endback end

accessor2

accessor3

accessorm

Retrievers

representative

DBMS

disk1

disk2

disk3

diskD

accessor1

Figure 3.5: Two Forms of Concurrency in a File Structure

vidual queries and executing the resulting sub-queries in parallel.

Concurrent Accessors. Supporting concurrent accessto a database impr oves its uti-

lization, in the sameway that multipr ogramming operating systemsimpr ove uti-

lization of a computer—by having several simultaneous requeststo execute, it is

possible to perform someof the requestsin parallel if the requestsaccessdata in a

non-con�icting manner. There is no dif ferencein the turnar ound time of an indi-

vidual request(in fact, theremay bea slight increasein turnar ound) in comparison

to serial execution of the samerequest,but the total throughput of requestsis im-

proved. However, there is a high cost in complexity that must be paid to ensure

proper accessto shared data. Problems such as livelock, deadlock, and starvation

must all be dealt with, while attempting to achieve as much parallelism between

3.3Parallelism in � Database 71

the processorsand the I/O devices. As well, such systems can quickly saturate

becauseof the I/O bottleneck; therefore, attempts to achieve optimal parallelism

in accessingpersistent data are often fruitless.

Note that concurrent retrieval and concurrent accessare orthogonal aspectsof paral-

lelism; systemsexist that provide one or the other or both.

The question addressedin this section is how to usethe EPDtechniques for partition-

ing �le structures across multiple disks and accessingpartitioned data to achieve con-

current retrieval. The issue of concurrent accessorsfor EPD �le structures is addressed

in chapter 6. Further, the design, implementation and analysis of the parallelized multi-

disk versions of threedatabasejoin algorithms is presentedin chapter 5.

3.3.1 Partitioned File Structures and Concurrent Retrievals

Concurrent retrieval attempts to deal with the CPU-I/O bottleneck by partitioning data

acrossmultiple disks and then accessingthe data in parallel. A typical disk-array system

partitions a �le structure into several stripes, eachstored on a dif ferent disk. Both static

and dynamic allocation of �le structuresacrossseveraldisks have beenaddressedin the

literatur e. One of the major issuesis that the striping or partitioning algorithm should

partition the data so that the accesstime for a particular accessmethod is minimized and

the I/O load is balancedacrossthe disks. The partitioning algorithm can be application

speci�c or general. While partitioning, balancing the I/O load does not imply a physi-

cally even distribution of data acrossseveral disks. The goal is to partition data in such

a manner that during retrievals, the data units that need to be accessedare as evenly

distributed aspossible acrossdisks.

In the discussion here and in chapter 4, the general concern is not about accessto

the index portion of the �le structure. Normally the index is relatively small and highly

72 Using the EPD Approach to Build a Single-Level Store

accessedso that most of it remains resident in main memory, and consequently, does

not contribute signi�cantly to disk accesses.Nevertheless, the discussion can be easily

extended, if necessary, to include the index portions of �le structures.

A B
�

-Tree and an R-Tree based on the EPD approach were modi�ed so that insert

operations automatically partition the data acrossseveraldisks and the query operations

retrieve data from multiple disks in parallel. The partitioning of the two �le structures

is discussedin chapter 4, while somegeneral issuesare presentedbelow.

3.3.2 Query Types and Parallelism

Exact match queries (e.g., retrieving a single record to match a speci�ed key) usually

cannot take advantage of partitioning becausethe index is already in memory and there

is only one disk accessrequired to service the request.Note, however, that in somedisk

array basedimplementations, individual data records arealsosplit acrossmultiple disks.

Retrieving a record in such a system involves a parallel reading of the individual pieces

of the record from multiple disks.

Rangequeries, on the other hand, can exploit partitioned �le structures to perform

parallel retrievals if the data neededfor responding to aquery is distributed acrossmulti-

ple disks. A speci�ed range query canbebroken down into multiple smaller sub-queries

that can be executed in parallel inside the DBMS. By dividing the original query so that

the resulting sub-queries accessdata on dif ferent disks, the overall query can be pro-

cessedmuch faster. Similarly, if the �le structure is aware of the accesspattern for its

data blocks, it can employ pre-reading techniques to increasethe parallelism in reading

blocks of data from secondary storage.

Severaldif ferent kinds of range queries common in databaseapplications were de-

signed, implemented and evaluated using � Database to demonstrate the effectiveness

of parallelism in a memory mapped environment basedon the EPD approach. In partic-

3.3Parallelism in � Database 73

ular, the following threetypes of range queries were investigated:

1. A range query, called a <K,K> range query, described by two key values K1 and K2.

All records with key values between K1 and K2 inclusive are returned asa result of

the query. Neither K1 nor K2 need be in the database.

2. A range query, called a <K,C> range query, described by a key value K and a

signed integer C. The query result consistsof � C � consecutiverecords starting with

the record with key value K. The dir ection traversed from K is speci�ed by the

sign of C. A positive C indicates traversal in the order that the keys are sorted in

the �le structure—for ascending order, values greater than K are returned and for

descending order, values less than K are returned. A negative C causestraversal

to occur in the opposite dir ection.

3. A range query, called a <K,C,C> range query, described by a key value K and two

positive integer values C1 and C2. C1 records with keys before and C2 records with

keys after the record with the key value K are returned.

In general, the records returned from a range query are unordered.

3.3.3 Range Query Generators or Iterators

In � Database, an application program performs a range query by using a programming

construct called a generatoror an iterator [LAB
�

81, Sha81, RCS93]. A typical range query

generator provides at least two methods, namely, an initialization routine and an iter-

ative operator. The initialization routines are used to specify a range query. Once the

generator has been initialized, each successiveinvocation of the iterative operator re-

turns another object from the result of the speci�ed query until all records have been

returned. Further discussion of generators is presented in section 3.4. The generators

74 Using the EPD Approach to Build a Single-Level Store

developed for the partitioned �le structuresperform parallel retrieval of data needed to

processthe speci�ed range query. Eachgenerator provides an iterative operator >> that

can be invoked to retrieve, one record at a time, the result of the speci�ed range query.

As an example, consider the following code fragment: This code fragment initializes an

instance of a B-Treegenerator object,gen, to processa <Key,100> range query on the B-

Treestructure referred to by the accessobject, accessObject. Eachsuccessivecall to the

>> operator of gen returns a pointer to another record from the result of the <Key,100>

range query. When all the records have been exhausted, the NULL pointer is returned,

which causesthe loop to terminate.

// <K,C> range query application

for (BTreeRangeQuery gen(accessObject, Key, 100); gen >> rec;) {

// process rec

}

3.3.4 Generic Concurrent Retrieval Algorithm

Once a �le structure has been partitioned, the issue of accessingit while employing

as much parallelism as possible can be addressed. The main concern is increasing the

degreeof parallelism at the back end of the DBMS. A concurrent retrieval algorithm can

take advantage of the potential parallelism, but only if suf�cient hardwar e is available.

First, multiple disks must be accessiblein parallel, which implies that disks must be

capable of concurrent seeks. Second,if multiple processorsare available, they must be

capableof performing any �le-str ucture administration in parallel with the application

program processing the results of the range query. The Sequent Symmetry computer

con�guration described in section 4.1satis�ed both of thesehardwar e requirements.

The following algorithm was developed to perform concurrent retrievals on EPD

3.3Parallelism in � Database 75

�le structures. The algorithm is generic in nature and can be easily specialized for per-

forming concurrent retrievals on any arbitrarily complex indexed �le structure. Recall,

in � Database, a �le structure is a single object with one representative. When the �le

structure is partitioned acrossD disks, the �le structure segment is also divided into D

contiguous partitions (seesection 3.1.3)and the D �le structure partitions are memory

mapped, one after the other, into the divided segment by the representative. Then M

kernel threads(UNIX processesin � C++) are created to share the representativesegment

containing the mapped �le structure partitions; M is a control variable speci�ed by the

experimenter. The M kernel threadsexecuteD
�

1 light-weight tasks that are created to

perform retrieval requests. D of the tasks, called retrievers, copy records from the pri-

vate memory of the representative to shared memory and the remaining task is called

the leafretrievaladministrator(LRA) asdepicted in �gur e 3.6. When a generator object is

instantiated for executing a speci�ed range query, the generator allocatesa buffer areaof

speci�ed size to be shared between the speci�ed accessorobject and its representative.

In addition, another task, called the �le structure traverser(FST),is created. The FST

organizesand maintains the allocated buffer spaceasa sharablebuffer pool. As well, the

FSTtraverses the �le structure index and generatesa list of pointers to leaf nodes that

contain all the records satisfying the query being executed,without actually dereferenc-

ing any leaf node pointers. For eachpointer in the list, the FSTcommunicates with the

LRA specifying the leaf node pointer, number of records needed from the referent leaf

node (obtained from an appropriate index entry), and a handle for the buffer pool. The

LRA partitions and distributes the FSTrequestsamong the retriever tasks. A retriever

task dereferencesthe speci�ed pointer causing the referent leaf node to beretrieved from

disk, allocates a buffer from the buffer pool, and copies as many records from the leaf

node as will �t into the buffer. The last step is repeateduntil all the selectedrecords in

the leaf node have beencopied into the buffer pool and then the retriever task waits for

76 Using the EPD Approach to Build a Single-Level Store

Query
Results

disk1 retrieve1

Records

disk2 retrieve2

disk3 retrieve3

diskD retrieveD

Index Search Index

Leaf

Query
Specs.

GENERATORi

Shared Buffer

M execution threads

Requests

File
Structure

Traverser(s)

(FST)(LRA)

D
�

1 light-weight tasks

Administrator
Leaf Retrieval

Partitioned File Structure Segment
(Representative)

Accessor
File

Structure

>>

Figure 3.6: Generic Concurrent Retrieval Algorithm

more work from the LRA. This design ensures that the only bottleneck in parallel pro-

cessingof the speci�ed query is the speedwith which the bounded buffer can be �lled

and emptied. In general, an application program can keep ahead of a small number of

disks (1-7 disks), depending upon the complexity of data processinginvolved, because

the data processingtime is signi�cantly lessthan the I/O time.

A retriever task may or may not be tied to a particular disk. In EPD terminology ,

being tied to a particular disk means accessingonly that part of the addressspacethat

contains the mapping for the disk. When a retriever task is not tied to a particular disk,

the task can be asked to processany leaf node by the LRA. In this strategy, the LRA

3.3Parallelism in � Database 77

maintains a single FIFO queue of requests from the FST. When any of the retrievers

is free, the LRA passeson the FST request at the front of the queue, causing the leaf

nodes to be processedin FIFO order. The problem with this schemeis that parallelism is

compromised when severalconsecutiveleaf node requestsin the queue are for the same

disk. In this case,many or all of the retriever tasksmay block on a single disk while other

disks (and their controllers) remain un-utilized. Therefore, it is usually more ef�cient to

tie eachretriever task to a particular disk by making the LRA createD queues,one for

eachdisk. Upon arrival at the LRA, a leaf retrieval requestfrom the FSTis queued on one

of the D queuesdepending upon the disk containing the leaf node to be processed.Each

retriever task processesrequestsfrom one queue only. In this scheme,the throughput is

dir ectly controlled by the slowest disk in the chain, resulting in a near optimal solution.

This observation was veri�ed by running experiments on both of these strategies (see

chapter 4).

Finally, double buffering can be exploited by tying more than one retriever task to

each disk so that while one retriever is processingdata for a leaf node, another one is

reading the next leaf node to be processedfrom the same disk. Note that in order to

gain from this strategy, the number of kernel threads must be at least the number of

retriever tasks,becausein a memory mapped system, the kernel thread causing a page

fault blocks until the faulted page has beenbrought into memory.

The generic concurrent retrieval algorithm described above can be used for dif ferent

indexed �le structures by specializing the FSTand the components of a retriever task

responsible for processingof individual leaf nodes to extract information.

78 Using the EPD Approach to Build a Single-Level Store

3.4 Programming Issues and Interfaces

A memory mapped �le structure should be able to use all the capabilities of the imple-

mentation programming language. This chapter illustrates some of the ways in which

the EPD approach to memory mapping achievesthis goal in � Database.

3.4.1 Polymorphism

The polymorphic facilities of C++ canbeapplied to generalize the de�nitions of �le struc-

tures and to allow reuseof the �le structure's implementation by other �le structures.

Generalization allows existing �le structure code to be specialized by users and reuse

allows �le structure designers to write new �le structures in a shorter time with fewer

errors (on the assumption that the old �le structure is debugged). The desire to gen-

eralize and reuse code arose during the construction of the �le structures used in the

experiments described in chapter 4. During this process,two issueswere noticed:

1. A �le structure and its accessmethods are usually polymorphic, that is, they can

handle a number of dif ferent record (and possibly key) types. However, this poly-

morphism is usually achieved at the loss of type safety by dealing with blocks

of untyped bytes. Some systems [GR83, CLV91] provide dynamic type/format

checking to tackle this problem. I believe that the interface to an accessmethod of

a �le structure should be statically type checkedto permit early detection of errors

and ef�cient codegeneration (asin E [RCS93]). Therefore, there is a need to beable

to generalize a �le structure and its access-methodinterface acrossthe record (and

possibly key) type.

2. Many �le structure algorithms incorporate both a data structure and a storage

management scheme,e.g., a B-Tree is an N-ary tree with �xed or variable sized

3.4Programming Issues and Interfaces 79

data records stored in uniform sized nodes. Storagemanagement deals with un-

typed blocks of bytes of a segment and, therefore, it is not possible to perform

static type-checking at the storage management level [BDZ89]. Among dif ferent

�le structures,there is asigni�cant amount of duplicated codedealing with storage

management that can be abstracted out and reused. By factoring out the storage

management aspect, it is possible to deal with the data structure independently

of storage management, which can be encapsulated into a separate tool that can

be used in varying ways with dif ferent data structures. In � Database, only �le

structure designers work at this level; users usually work at a statically type-safe

level.

The rest of this section describeswork done to achieve the above two goals. Object-

oriented programming techniques are employed, but languages with other forms of

polymorphism, e.g., parametric polymorphism, are equally applicable. C++ [ES90] is

used as the concrete implementation programming language. A general knowledge of

object-oriented programming is assumedthroughout this discussion. In addition, a ba-

sic familiarity with C++ is assumed,although most of the examplesare self-explanatory.

3.4.2 Generic File Structures and AccessMethods

From a codereusestandpoint, the code to managea �le structure is largely independent

of the record (and possibly key) types. A simple example is an ordered linked-list. The

linked-list data structure is independent of the type of elements stored in a node of the

list, requiring only assignment on the record type if stored by value, and comparison

on the key type. However, the access-methodroutines used to modify a �le structure

need to be specialized in the record (and possibly key) type so that static type-checking

80 Using the EPD Approach to Build a Single-Level Store

is possible. Therefore,an accessmethod needsto be generic in these�elds and possibly

generalized in other aspects.To accomplish thesedesign requirements, I initially used a

preliminary version of the C++ template facility [FON90] to de�ne generic �le structures

and their accessmethods; the code was subsequently changed to use the standard C++

templates when they becameavailable.

The template facility allows all components of a �le structure to be statically type-

safe. A user application specializesa generic �le structure by the data stored in it. For

example, a B-Tree�le structure is declared asfollows:

BTreeFile<int,�oat> db("testdb" , greater);

which createsa B-Tree stored in a UNIX �le named "testdb" , with int keys and �oat

data records, and the B-Tree is structured by a user supplied key comparison routine

greater(). Generic linked-list and B-Tree�le structuresare presentedlater in this chapter

to demonstrate the basic concept, and I have applied this approach to construct R-Tree,

general N-ary Tree,generalized graph and other �le structures.

3.4.3 Storage Management

One of the most complex parts of any data structure is ef�cient storage management.

In fact, much of a �le structure designer's time is spent organizing data in memory and

on secondary storage. For memory mapped �le structures,organizing data in memory

indir ectly organizesthe data on secondary storage.

This sectiondiscussesthe conventions and software tools used to organize and man-

agea �le structure's storage. By following theseconventions and using the appropriate

tools, it is possible to signi�cantly reduce the time it takes to construct a complex �le

structure. The details of the programming interface to the memory management tools

are presentedand then a tutorial in which a simple persistent linked-list data structure

3.4Programming Issues and Interfaces 81

and a generic B-Treeare built using the tools.

To a largeextent, this is the approachof many garbagecollection systemsthat provide

system- or program-wide storagemanagement [Wil91b]. The criterion used to judge the

successof this approach is whether an independent facility for storage management

can provide performance that is close to traditional schemesthat incorporate storage

management dir ectly with the data structure.

Memory Organization

In the EPD approach,memory is conceptually divided into threemajor levels for storage

management:

address space is a set of addressesfrom 0 to N used to refer to bytes or wor ds of

memory. This memory is conceptually contiguous from the user's perspective,

although it might be implemented with non-contiguous pages. An addressspace

is supported by hardwar e and managed by the operating system.

segment is a contiguous portion of an address space. Usually, there is a one-to-one

correspondencebetween an address space and a segment, but it is possible for

an addressspaceto be subdivided into multiple segments,e.g., with segmented

hardwar e addressing. In � Database, a segment is also mapped onto a portion of

the secondary storage. A segment is supported by hardwar e and managed by the

address-spacestoragemanager (the representative).

heap is a contiguous portion of a segment whose internal management is independent

of the storagemanagementof other heapsin the segment,but heapsat a particular

storage level interact. A heap is not supported by hardwar e and is managed by its

containing storagemanager.

82 Using the EPD Approach to Build a Single-Level Store

Since � Database is capable of creating multiple mappings simultaneously (seesec-

tion 1.2.2),multiple segmentscan exist at the sametime. In a traditional programming

environment with only a single heap, dynamic memory management routines for the

heap are usually provided by the programming language system (e.g.,new and delete

operators). This facility is no longer adequate for the multiple segments in � Database

for the following reasons:

1. When multiple segments are present simultaneously with each having its own

heap, a target segment must be speci�ed each time a memory allocation request

occurs.

2. The programming language heap is a general purpose storage area. A mapped

segment,on the other hand, is almost always dedicated to a particular data struc-

ture,e.g.,a linked list or a B-Tree.Therefore,there is an opportunity for optimizing

the storage management schemebasedon the contained data structure. In addi-

tion, many data structures require special action to be taken when storage over-

�ows and under�ows, e.g., when a node in a B
�

-Tree �lls up during insert, the

data structure requiresthe creation of a new node and the movement of a subsetof

data from the old node to the new one. The storage management facility must be

able to accommodateapplication speci�c actions for thesecases.The basicconcept

of using multiple independent heapshas been employed by many other systems,

e.g.,the areavariables in PL/I [IBM81].

To achieve the above, � Database memory management facilities are provided in the

form of generic memorymanagerclasses. Memory manager objectsinstantiated from these

classesare self-contained units capableof managing a contiguous piece of storageof ar-

bitrary size, starting at an arbitrary address. If a segment is managed by a given mem-

ory manager object, invoking member routines within the object implicitly performs the

3.4Programming Issues and Interfaces 83

desired management on its segment. Sincethe dif ferent managed areasare controlled

by independent memory managers,it is possible to creatememory management classes

with dif ferent storagemanagementschemesto suit the needsof dif ferent data structures.

Finally, a programming technique is provided that allows application speci�c over�ow

action.

3.4.4 Nested Memory Structure

All segmentsare nested in an addressspace.All heapsare nested in a segment. Further,

sincea heap is simply a block of storage, it is possible for heapsto be nestedwithin one

another. This structure is illustrated in Figure 3.7. The form of an addressfor eachlevel

may depend on the storagemanagement schemeat that level.

In theory there is no limit on the depth of nesting of heaps,but in practice there is a

limit imposed by the number of bits in the addressused to referencedata in the lowest

level heap. In general, a small number of sub-heaps are suf�cient for most practical

problems; see[BZ88] for a further discussion of expressingnesting.

3.4.5 Address SpaceTools

As mentioned, an addressspaceis managed by the operating system so there is usu-

ally little or no control over it by the �le structure designer. However, some operating

systems support speci�cations like sequential or random accessof an address space,

providing dif ferent paging schemesfor each;facilities to control which page is replaced

would be extremely useful. If address-spacemanagement tools are available, they can

make a signi�cant dif ference in the performance of a �le structure, but currently such

tools are almost non-inexistent in commercial systems.

84 Using the EPD Approach to Build a Single-Level Store

segment

segment

heap

heap

heap

heap

heap

addressspace

Figure 3.7: Nested Memory Structure

3.4.6 Segment Tools

Segmenttools create,manage and destroy segmentsin an addressspace.Furthermor e,

�exible capabilities are provided for mapping one or more disk �les into a segment. The

capability to map multiple disk �les is discussed in chapters 3 and 4 where it is used

for partitioned �le structures. In this chapter, the focus is on mapping a single �le into

a segment. All segment capabilities are provided through the representative for a �le

structure. The programming interface for thesefacilities is discussednext.

3.4Programming Issues and Interfaces 85

3.4.7 � Database Programming Interface

An application program that uses � Database consists of the following basic modules

that are linked together to form an executableprogram.

1. � Database library: This library is the core module that contains the basic imple-

mentation of the representative and the accessor, both of which are generic and

provide all low-level support needed to employ the EPD approach to memory

mapping for building �le structures.

2. File structures and their accessmethods: A speci�c �le structure and its access

methods are implemented as classesthat inherit from the specialized versions of

the baserepresentativeand the accessorrespectively. An alternative to inheritance

is to make a specialized instance of the representative a member object of the �le

structure class.It is the responsibility of the �le structure designer to provide de�-

nitions and implementations for the �le structureand its accessmethods. A library

consisting of severaldif ferent �le structures,both sequential and parallel, hasbeen

developed aspart of this work.

3. Application program: In order to manipulate data stored in a �le structure, the

application program declaresinstancesof the �le structureand the accessorobjects

and usesthe interface provided by the accessorclassto perform operations on the

�le structure.

Code in the � Database library aswell as �le structure code is executed in the repre-

sentative segment,while application program code is executedin its own addressspace.

With the useof wrappersprovided in the � Database library and described in section3.4.8,

application code can be executedin the context of the representativesegment.

86 Using the EPD Approach to Build a Single-Level Store

3.4.8 Representative Interface

The representativeinterface in the � Database library is provided by threerelated classes:

Rep, RepAccess and RepWrapper.

Class Rep

Rep is the representativedata structure. It is responsible for mapping and un-mapping

�les to/fr om segments,and controlling the size of the segment, which determines the

size of the �le. The basic public interface of Rep is shown in Program 3.1;some details

have beenomitted to simplify the following discussion.

uMonitor Rep {
public:

virtual void *start(); // starting address of mapping
virtual int size(); // current size of mapping
virtual void resize(int size); // resize mapping
virtual bool created(); // UNIX �le created by this rep?
void createExtraProcs(int Num); // add extra virtual processors
void deleteExtraProcs(); // remove extra processors

};

Program 3.1:BasicRepresentative Interface

uMonitor is a � C++ artifact that declaresa monitorclass. Brie�y , a monitor classis a nor-

mal C++ classexcept that concurrent execution of the public member routines of a moni-

tor classis serialized (see[BFC95] for further details on monitors). The member routine

start returns the starting addressof the mapping, the segmentbaseaddress,which is cur-

rently 16M. The member routine size reports the current size of the mapped spaceand

thus the sizeof the mapped �le. The routine resize setsthe sizeof the mapped space,and

indir ectly, the �le size to the value speci�ed asits argument. The routine created returns

true if the requested UNIX �le was created by the current representative, and false if

3.4Programming Issues and Interfaces 87

the �le was presentbefore the representativewas created. The routine createExtraProcs

createsextra virtual processorsthat are attached to the addressspaceof the representa-

tive segment. Extra virtual processorsare useful for increasing parallelism and can be

destroyed when not needed by invoking the companion routine deleteExtraProcs.

ClassRep is not intended to be instantiated dir ectly by the �le structure code,which

is why it has no public constructors. Instead, a representative is created indir ectly

through class RepAccess, which may create a new instance of Rep for the �le struc-

ture, if one does not exist yet, or use an existing one. Thus, the only way to control

�le mapping and un-mapping is through an instance of RepAccess. The representative

accessobject takes part in maintaining the � Database global representative table that

guarantees a one-to-one relationship between representativesand �le structures in an

application.

Class RepAccess

The basic interface to RepAccess is shown in Program 3.2. RepAcess is generic in the

type of a specialized representativethat is createdby inheriting from Rep. Usually, a spe-

cialized representative is not needed and RepAcess is specialized with classRep itself.

The constructor 's parameter for RepAccess is the name of a UNIX �le for a �le structure

or a list of the namesof UNIX �les comprising a partitioned �le structure. Upon the cre-

ation of an instance of RepAccess, the global representative table for the application is

searched in an attempt to locatean active representativefor the �le structurespeci�ed by

the given UNIX �le(s). If a representative is present,the corresponding �le structure is

already mapped and a new mapping is unnecessary. A pointer to the existing represen-

tative is stored in the newly created RepAccess instance, the representative'suse count

in the global table is incremented,and the creation is complete. If, however, no represen-

88 Using the EPD Approach to Build a Single-Level Store

tative is found for the �le structure, an instance of classRepType is created and entered

into the representative table. If the �le structure does not already exist in the UNIX �le

system, it is created and initialized. The �le structure is always mapped at the same

starting location, the segmentbaseaddress(seesection3.1.3).However, an advanced fa-

cility is provided for specifying the starting addressfor the mapping. This facility must

be used with caution and only when no dereferencing of embedded pointers is to take

place during execution.

template<class RepType> class RepAccess {
public:

RepAccess(char *�lename);
RepAccess(char *�lename[], int NumPartitions);
void *start(); // starting address of mapping
int size(); // current size of mapping
void resize(int size); // resize mapping
int created(); // UNIX �le created by this rep?

};

Program 3.2: BasicAccessClassInterface

Themember routines start, size, resize and created arecoversfor similar onesin class

Rep. RepAccess routines perform the samefunctions astheir counterparts in Rep. They

are presentso the full functionality of the representative is available to the �le structure

designer via the accessclass. This approach serves to completely isolate the represen-

tative objects from the �le structure code. However, this intended isolation presentsa

problem for objectsstored within the persistent area for the following reasons:

1. A persistent object within the �le structure cannot reliably refer to an existing

RepAccess object created outside the persistent area becausea RepAccess ob-

ject is created on a per accessbasis and has a many-to-one relationship with the

persistent space.

3.4Programming Issues and Interfaces 89

2. A RepAccess object cannot be created from inside the persistent areabecausethat

would result in a pointer out of the mapped area,which is a pointer to a transient

object from a persistent area.

3. The RepAccess constructor takes the name of the UNIX backing �le as an argu-

ment. To supply the argument, the name of the �le has to be stored inside the

persistent area, which means that the UNIX backing �le cannot be renamed once

it is createdby � Database. This limitation is quite unacceptable.

Becauseof the above problems, the only accessto mapping control for objectswithin the

persistent area is by a dir ect pointer to the Rep structure.

Organization of Representative and AccessClasses

After the representative is created (indir ectly by an accessorobject), the �le is mapped

into a new segment,and by convention, the representativewrites a pointer to itself at the

beginning of the newly mapped spacefor the following reason.The storagemanager for

a segmentor heap must exist before the areait managesso there is at leastsomewhere to

store a pointer to the new segment or heap. Therefore, the storagemanager is allocated

out of an existing storage area and the new storage area is conceptually nested in the

storageareathat contains its storagemanager. In general, the nesting relationship needs

both a pointer from parent to child and vice versa. Without the backpointer from child to

parent or a pointer to the root of the storagehierarchy, it is not possible to �nd the parent

storagemanager when a child needsmorestorage. The pointer inserted at the beginning

of a segmentfor a newly instantiated mapped �le structureprovides the back pointer for

storagemanagersin the segmentto communicate with the representative'sstorageman-

ager. For abstraction, this pointer is contained in an instanceof a pre-de�ned � Database

class,RepAdmin, which is stored at the beginning of the segmentby convention.

90 Using the EPD Approach to Build a Single-Level Store

Figure3.8shows the organization of representativesand their accessclassesand seg-

ments. The representativesare chained together to allow them to be searched when an

accessobject is created to seeif there is already an active representative for the speci�ed

�le structure. Notice, also, a pointer from the segment to the representative. Having

a pointer from persistent memory to transient memory for the representative violates

a previous design restriction becausea pointer to the transient representative from the

persistent �le is invalid as soon as the application that created the representative ter-

minates or destroys the representativeobject. However, this schemeworks becausethe

representativepointer is dynamically initialized on the �rst accessto the corresponding

persistent area during an application's execution, i.e., when the representative object is

created and the persistent area is mapped, the representativesegment pointer is initial-

ized. Once the �le structure has beenunmapped, the representativesegment pointer at

the beginning of its persistent areabecomesmeaningless.

RepAccess

Rep

segment

databaseimplementor

shared memory
private memory

or user

implementor
�le structure

Figure 3.8: Organization of Representatives

Upon the destruction of an instance of RepAccess, the use count for the represen-

3.4Programming Issues and Interfaces 91

tative in the global table is decremented. If the use count for the representative reaches

zero, all accessrequestsfor the corresponding �le structure have beenclosed. The map-

ping is then terminated and the representativeobject destroyed.

Class RepWrapper

Sincethe �le structure is mapped into the representative's private memory, user appli-

cation code does not have dir ect accessto the contents of the �le structure; the applica-

tion code only has accessto shared memory. The classRepWrapper, with an interface

shown in Program 3.3,provides the mechanism to allow application code to accesspri-

vate memory for a particular representative'ssegment.

class RepWrapper {
public:

RepWrapper(RepAccess &repacc);
};

Program 3.3: BasicWrapper Interface

RepWrapper is a wrapperclassand, therefore, does not have any member routine of

its own; all actions of the wrapper classare carried out by the constructor and destructor

of the wrapper . When a wrapper is declared inside a program block, both of the wrap-

per 's operations are guaranteed to be performed, even if the block is terminated by an

exception. The RepWrapper constructor takesan instanceof RepAccess asan argument,

which indir ectly refers to a representative's addressspaceand any segment(s)mapped

into it. The main action taken by the constructor is to resetthe current segment pointer,

to a value corresponding to the speci�ed RepAccess object, from which addressesare

implicitly related. In effect, the current thread of control is migrated to another segment

in which addresseshave a new meaning, except for those addressesthat refer to data

92 Using the EPD Approach to Build a Single-Level Store

in the common shared areaof eachsegment. However, since � Database executeson an

architecture without segmentation capabilities, switching the current segment pointer

is achieved indir ectly by explicitly migrating the current thread of control to another

UNIX process,which has a dif ferent page table and, hence,a dif ferent mapping for the

private part of the addressspace. In practice, the UNIX processexecuting the thread

stops and the other UNIX processcontinues executing the thread's code. The destruc-

tor executesthe reverseaction, i.e., it migrates the current thread of execution back to

the addressspacewhere the constructor was executing. The cost of either operation is

a light-weight context switch and possibly a heavy weight context switch if the UNIX

processassociatedwith the destination addressspaceis currently blocked.

As soon as an instance of RepWrapper is created, the speci�ed representative's ad-

dressspacebecomesaccessibleto the executing program in addition to the already ac-

cessibleshared memory; the duration of accessibility is the life of the wrapper . Note,

however, that two wrappers cannot be active at the sametime becauseonly one address

spacecan be in effect at a time so only segments in that addressspaceare accessible.

Therefore, a processcannot have dir ect accessto two or more mapped �les simultane-

ously. One way to ensure this restriction is to only createone instance of RepWrapper

per block and make the wrapper the �rst declaration to ensure the segment is accessible

before operations are performed on it, asshown in Program 3.4.This convention further

ensures that the wrapper 's actions occur as the �rst and last operations of a program

block.

3.4.9 Heap Tools

As mentioned earlier, a segmenthasno inherent facilities to manageallocation and deal-

location of its memory. This section discussesheap tools that can be used to manage

a segment's memory. If none of the tools presented in this section is appropriate for a

3.4Programming Issues and Interfaces 93

void list::rtn() {
RepWrapper(repacc); // rep's address space becomes accessible

// may access data in shared segment and rep's segment only

} // back to previous address space and rep's address space is inaccessible

Program 3.4: Using a Wrapper

given application, it is possible to build specialized heap management tools.

Storage Management Schemes

While there are a large number of storage management schemespossible, three basic

schemesareprovided in � Database. The �rst version of theseschemeswas implemented

by A. Wai aspart of his M.Math essay[Wai92]. The schemespresentedbelow areordered

in increasing functionality and runtime cost.

uniform has �xed allocation size. The size is speci�ed during the creation of the mem-

ory manager objectand cannot bechangedafterwards. Uniform memory manage-

ment is often used to divide a segment into �xed sized heaps (e.g., B-Tree �xed-

sized nodes).

variable has variable allocation size. The size is speci�ed on a per allocation basis but

once allocated, cannot be changed. This is a general purpose schemevery similar

to the malloc and free routines of C [KR88].

dynamic has variable allocation size. The size is speci�ed on a per allocation basisand

can be expanded and contracted any time as long as the area remains allocated.

Becauseof this property, the locations of allocated blocks are not guaranteed to

be �xed. Therefore, an allocation returns an objectdescriptorinstead of an absolute

address. An allocated block does not have an absolute addressand must be ac-

94 Using the EPD Approach to Build a Single-Level Store

cessedindir ectly through its descriptor. Becauseof this indir ection, it is possible to

perform compaction on the managed space.Therefore, fragmentation can be dealt

with in an application independent manner.

These three storage management schemesshould cope with most application de-

mands. Should special needsarise, special purpose memory management schemescan

becreatedand easily integrated into � Database, possibly reusing codefrom the supplied

schemes.

Nesting Heaps

With many applications, a segment has to be subdivided into multiple heaps that are

managed independently of eachother. The nodesof a B-Treeareexamplesof suchheaps.

Sincethe heapsare themselvespiecesof storage that are usually allocated and released

dynamically , it is logical to have a higher level memory manager to deal with these

heaps. The segment then becomesan upper level heap with dynamically allocated sub-

heapsnested inside.

A heap may be accessedin two ways: by the �le structure implementor and by a

nestedheap. For example, the storagemanagementfor aB-Treehas3 levels: the segment,

which is managed by the representative, within which uniform-size B-Tree nodes are

allocated, within which uniform or variable sized records are allocated. Depending on

the particular implementation of the storagemanager at eachlevel, dif ferent capabilities

are provided. A �le structure implementor makes calls to the lowest level (uniform or

variable storage manager) to allocate records. A uniform or variable memory manager

can then be created within the node. After that, the lower level memory manager for

the node can be called to allocate data records in that node. Figure 3.10 on page 116

illustrates this storagestructure.

3.4Programming Issues and Interfaces 95

Over�ow Control

When a heap �lls, a generic storagemanager can sensibly take threeactions:

1. enlarge the heap by adding additional storage at the end of the contiguous heap.

However, when there are multiple heaps at a particular nesting level, this may

necessitatemoving one or more other heaps.

2. allocate a new heap which is larger than the existing heap,copy the contentsof the

old heap to the new heap, and delete the old heap.

3. allocate a new heap and copy someportion of the contents to the new heap so that

eachheap has some freespace.This action results in two independent heaps that

must be managed.

Moving heaps or their contents requires �nding and relocating pointers to data being

moved. Sincegeneric memory managersare independent of the type of data they man-

age, it is impossible for them to take theseactions on behalf of the �le structure. There-

fore, a generic memory manager doesnot deal with expansion.

Instead, a generic memory manager is designed with an expansionexit, which is ac-

tivated when a heap �lls, so that a data-structure speci�c action can be performed to

deal with heap over�ow . The following are two examplesof such data-structure speci�c

actions. When a B-Tree node �lls during an insert operation, an additional node is al-

located and some of the contents of the old node are migrated to the new node. When

a variable-size character string heap �lls, the heap may be copied to a new heap that is

larger and the previous heap freed.

To encapsulatethis application speci�c dependency, the conceptof an expansion exit

is implemented using an expansionobject. An expansion object is written aspart of a �le

structurede�nition and it contains enough intelligence to deal with over�ow . All expan-

96 Using the EPD Approach to Build a Single-Level Store

sion objectsare derived from a special expansionbaseclassand one must be provided to

the genericmemory manager when the latter is created. When the genericmemory man-

ager detects that a heap is full during an allocation operation, it calls member routines

in the expansion object to deal with the situation.

Note that heap under�ow can also be dealt with in a similar manner, but is not dis-

cussedhere.

Expansion Object

As mentioned earlier, a basic memory manager does not deal with heap over�ow . In

order to handle over�ow , a specialized heap expansion de�nition must be created to

perform application speci�c over�ow action. The classuExpand, shown in Program 3.5,

is the interface between the memory manager and the over�ow handler.

class uExpand {
public:

virtual bool expand(int) { // default expand routine
cerr << "uExpand::expand(" << this <<

"): no expand routine defined." << endl;
uExit(-1);

}
};

Program 3.5: Heap Expansion Object

The member routine expand is called from within the memory manager whenever

more storage is needed due to a heap over�ow . The routine takes an integer argument

that speci�es the amount of additional storage requested. A �le structure speci�c ex-

pansion classmust derive from classuExpand and rede�ne the expand routine to per-

form the desired over�ow action, adding more private variables to the classde�nition

asnecessary. The expand routine's return code controls the futur e action of the memory

3.4Programming Issues and Interfaces 97

manager. If the expand routine returns false, the allocation processfails. If the expand

routine returns true, the memory manager re-attempts to allocate memory out of the

expanded heap and fails if there is still insuf�cient storageafter the expansion.

As shown in program 3.5, ordinarily the expand routine would be de�ned as a C++

virtual routine so that it can be replacedby specialized derived expansion classes.How-

ever, expansion objectsassociatedwith persistent data structuresare stored in the per-

sistent area together with the data they manage. As mentioned in Section3.1.5,virtual

membersarecurrently not supported in a persistent area. Consequently, the expand rou-

tine is de�ned asa regular member routine and specialized using the generic (template)

facility in C++. The memory managers,which invoke the �le structure speci�c version of

expand, are parameterized basedon the �le structure expansion class. The interface of

the generic uniform memory manager is shown in Program 3.6.

template<class T> class uUniform {
public:

uUniform(void *mstart, int msize, T &expn, int usize);
void *alloc();
void free(void *p);
void sethsize(int newsize);

};

Program 3.6: Interface for Uniform StorageManager

The constructor takes four arguments: mstart is the starting addressof the managed

space(i.e., the heap), msize is the initial heap size, expn is a referenceto the specialized

expansion object and usize is the allocation size for the uniform heap. Once initialized,

the member routines alloc and free are used to allocate and freeuniform sized blocks of

storagein the heap. Themember routine sethsize is used to inform the memory manager

of a changein heap size and is intended to be invoked by the expansion object.

98 Using the EPD Approach to Build a Single-Level Store

To createa specialized uniform memory manager for use in a �le structure,a special-

ized expansion class is de�ned �rst, as shown in Program 3.7. This program createsa

uniform memory manager to manage storage that starts at the beginning of the persis-

tent areareferred to by the accessobject repacc, is initially 1000bytes in size, is allocated

in 100byte blocks and over�ow is handled by myExpObj.

class myExpand : public uExpand {
// variables necessary to perform expansion

public:
myExpand(. . .); // specify data needed for expansion
bool expand(int) {

// code to perform expansion
}

};

myExpand myExpObj; // create specialized expansion object

// create and initialize the storage manager
uUniform<myExpand> myUniSM(repacc.start(), 1000, myExpObj, 100);

Program 3.7: Specializing a Uniform StorageManager

For more �exible storagemanagement,a variable or dynamic memory manager may

be required. The interfaces of these two parameterized classesare shown in Program

3.8. The constructors takes threearguments mstart, msize and expn, which specify the

starting address,the initial size of the heap and the expansion object, respectively, just

as they do in the uniform manager constructor. Further, member routines alloc, free

and sethsize perform the samefunctions asthose in the uniform manager. The dynamic

manager deals with movable memory blocks, and therefore the alloc and free routines

make useof the indir ect pointer type Descriptor instead of the dir ect pointer type void *.

Specializedvariable and dynamic memory managersare created in the samemanner as

specialized uniform managersdescribed earlier.

3.4Programming Issues and Interfaces 99

template<class T> class uVariable {
public:

uVariable(void *mstart, int msize, T &expn);
void *alloc(int size);
void free(void *fb);
void sethsize(int newsize);

};

template<class T> class uDynamic {
public:

uDynamic(void *mstart, int msize, T &expn);
Descriptor alloc(int size);
void free(Descriptor p);
void sethsize(int newsize);
Descriptor realloc(Descriptor area, int addition);

};

Program 3.8: Interfaces for Variable and Dynamic StorageManagers

3.4.10 Linked List Example

This section illustrates basic techniques and tools for constructing a persistent �le struc-

tureby building agenericsingly linked list with nodescontaining avariable length string

value. Note that for a more �exible linked list, the type of the data stored in the nodes

can also be parameterized.

List Application

At the application level, the �le structure designer makes available four data struc-

tures: one to form the nodes of the list (listNode), one to declare a persistent linked

list (list<class nodeType>), one to accessit (listAccess<class nodeType>) and one to tra-

verse it (listGen<class nodeType>). Program 3.9 shows a simple application program

using the persistent linked list.

Thereareseveraldistinguishable components of the persistent linked list application.

First, there is a de�nition of the specialized list node, myNode, which must inherit from

100 Using the EPD Approach to Build a Single-Level Store

class myNode : public listNode { // inherit from list node
public:

char value[0]; // variable sized string
}; // myNode

char *next_string() { . . . }; // a random string generator

void process_string(char *p) { . . . }; // modify contents of string

void uMain::main() {
list<myNode> l("abc"); // create persistent list
listAccess<myNode> la(l); // open list

for (int i = 1; i <= 100; i += 1) { // create nodes in list
la.add(next_string());

} // for

listGen<myNode> gen; // used to scan through list
myNode *p;
char name[MAX_STRING_LEN]; // buffer space for strings

for (gen.over(la); gen >> p;) { // modify the list indirectly
la.get(p, name); // copy out information
process_string(name); // modify contents as needed
la.put(p, name); // copy information back

} // for

for (gen.over(la); gen >> p;) { // destroy the list
la.remove(p);

} // for
} // uMain::main

Program 3.9: Linked List Example

listNode to get the appropriate link �elds added. Sincethe data in eachnode is a variable

length string, the node structureonly de�nes a placeholder �eld, value, of zero size,and

the actual storagefor the string is allocated aseachnode is created. Secondis the creation

of the persistent list �le structure, l, with UNIX �le name "abc" . Third is the declaration

of the accessclassobject, la, for persistent list object, l. Both the persistent list classand

its accessclassare generic in the type of the node so that all accessesto the two classes

3.4Programming Issues and Interfaces 101

can be statically type checked.

The next three loops add, update and remove nodes using the accessclassroutines

add, get and put, and remove, respectively. The generic linked-list generator, listGen,

returns a sequenceof pointers to nodes stored in the persistent list. However, these

pointers cannot be dereferenced in the application program; they can only be used as

placeholders to nodesand passedto other accessroutines, like get and put. It is possible

to createa special list pointer type that restricts dereferencing to authorized list objects.

3.4.11 Linked List File Structure

Figure 3.9 shows all the list data structures created and their inter-relationships in the

persistent linked list �le structure.

List Node

The abstract class,listNode, shown in Program 3.10,contains the �elds needed by each

node in a linked list to relate the data. The member routine next allows indir ect access

to the link �eld.

class listNode { // abstract class containing link �eld
listNode *nxt;

public:
listNode *&next() { // access to link �eld

return nxt;
} // listNode::next

}; // listNode

Program 3.10:Abstract List Node Class

102 Using the EPD Approach to Build a Single-Level Store

MAP

alignment boundary

listAccess

list

head
expobj
vsm (several pointers into the heap area)

repacc

lst

�leName

admin

Representative

controls
mapping

UNIX �le name

RepAccess

list segment

myNode myNode

listAdmin
rep (initialized when mapping is created) List

Disk
Image
stored
in UNIX
�le
�leName

Addr ess
SegmentBase

Figure 3.9:Linked List StorageStructure

Administration

Information pertinent to a particular linked list, e.g., the pointer to the head of the list

and the memory management information for the persistent area,must outlive the ap-

plication program that createsthe list, i.e., information other than the linked list data

itself must persist. Therefore, this information must bestored in the samepersistent area

as the linked list itself. By convention, all such persistent administrative information is

encapsulated into an administrativeobjectstored at the beginning of the persistent area

or the segment. Furthermor e, the administrative type must inherit from the pre-de�ned

3.4Programming Issues and Interfaces 103

abstract type RepAdmin (seesection 3.4.8).

The code for the list administrative class is presented in Program 3.11. The class

contains a pointer, head, to the root of the persistent linked list, the expansion object

for the persistent area for the list, and the variable memory manager that managesthe

persistent area. As discussed in section 3.4.8,the representative initializes a pointer to

itself at the beginning of its persistent area. This pointer can be accessedfrom subclasses

of RepAdmin through the protected variable rep and is the reason for the convention

requiring the administrative classto inherit from RepAdmin and for the administrative

object to bestored at the beginning of the persistent areaor segment. The constructor for

the administrative classtakesan integer, indicating the initial heap size,asan argument,

initializes the expansion object, expobj, the variable memory manager, vsm, and then

setsthe list root pointer to NULL, indicating an empty list. The two private member rou-

tines alloc and free are utility routines that make useof the underlying variable memory

manager. The routine alloc is important becauseit caststhe untyped bytes returned from

the variable memory manager into the type of the generic list node, thereby providing

type-safe accessto the routines of the linked list �le structure.

Expansion Class

The expansion class for the linked list is de�ned in Program 3.12. The constructor

initializes a reference to the administrative object so that the expansion object can ac-

cessboth the containing storage manager, listAdmin::vsm, and the list representative,

listAdmin::RepAdmin::rep. The member routine expand �rst extends the persistent area

by calling the representative's resize routine. It then informs the variable memory man-

ager of the changeby calling its sethsize routine and �nally , returns true indicating that

104 Using the EPD Approach to Build a Single-Level Store

template<class T> class listAdmin : public RepAdmin {
friend class listExpType<T>; // give access to expansion class
friend class list<T>;

T *head; // root node of the list
listExpType<T> expobj; // expansion object to extend list memory
uVariable< listExpType<T> > vsm; // variable sized list storage manager

T *alloc(int size) {
return (T *)vsm.alloc(sizeof(T) + size);

} // listAdmin<T>::alloc

void free(T *p) {
vsm.free(p);

} // listAdmin<T>::free
public:

listAdmin(int �leSiz e) :
expobj(*this),
vsm((void *)this + sizeof(listAdmin<T>),

�leSiz e - sizeof(listAdmin<T>),
expobj

) {
head = NULL;

} // listAdmin<T>::listAdmin<T>
}; // listAdmin<T>

Program 3.11: List Administration Class

the original allocation operation should be re-attempted2.

File Structure Class

The purpose of the list �le structure classis to establish a connection between the exe-

cuting program and the UNIX �le that contains the list data structure. It does not make

the �le accessibleunless it is creating the �le, and then the �le is made accessibleonly

long enough to initialize the �le structure. Program 3.13contains the de�nition of the

list class,list.

2An additional error check is required to deal with failur e to obtain suf�cient storagefrom the segment,
but has beenremoved for clarity.

3.4Programming Issues and Interfaces 105

template<class T> class listExpType : public uExpand {
listAdmin<T> &admin;

public:
listExpType(listAdmin<T> &adminobj) : admin(adminobj) {
}; // listExpType<T>::listExpType

bool expand(int extension) {
// extend the segment
admin.rep->resize(admin.rep->size() + extension);
// inform the storage manager
admin.vsm.sethsize(admin.rep->size() - sizeof(listAdmin<T>));
return true;

} // listExpType<T>::expand
}; // listExpType<T>

Program 3.12:List Expansion Class

The constructor of list takes two arguments. The �rst one indicates the name of the

UNIX �le that contains the persistent linked list. The secondargument is optional and

indicates the initial size of the persistent storage that contains the linked list nodes, if

the �le structure is to be created; otherwise this parameter is ignored. The constructor

makes a copy of the UNIX �le name in shared memory, establishesa mapping to the

�le by creating a RepAccess object, makes the resulting segment accessibleby creating

a RepWrapper, obtains a pointer to the beginning of the segment to use as the location

of the administrative object,and checksto seeif the �le was createdon access.If the �le

has been newly created, the segment is extended to the speci�ed size and the adminis-

trative object is created at the beginning of the segment,which initializes itself through

its constructor, creating an empty list.

The private member routines �rst , add and remove manipulate the list nodes. These

routines are in the list object so that the list can be modi�ed by other objectswithin the

persistent area. The �rst routine returns a pointer to the beginning of the list. The add

routine calls the variable storagemanager in the administrative object to obtain storage

for a node of type myNode that can contain the string parameter, copies the parameter

106 Using the EPD Approach to Build a Single-Level Store

template<class T> class list {
friend class listAccess<T>;
friend class listGen<T>;

char *�leName; // UNIX �le containing the list
listAdmin<T> *admin; // administrator for the list segment

list(const list &); // prevent copying
list &operator=(const list);

T *�rst() { // return pointer to �rst node in list
return admin->head;

} // list<T>::�rst

void add(char *value) { // add name to the beginning of the list
T *newNode = admin->alloc(strlen(value));
. . . // initialize newNode with value and put at head of list

} // list<T>::add

void remove(T *p) { // remove node from list
if (p == admin->head) { // remove �rst node

admin->head = (T *)p->next();
} else { // remove node in list

. . . // search for and remove node p from list
} // if
admin->free(p);

} // list<T>::remove

public:
list(char *name, int initSize = 4 * 1024) {

�leName = new char[strlen(name) + 1]; // allocate storage for �le name
strcpy(�leName, name); // copy �le name
RepAccess<Rep> repacc(�leName); // map �le
{

RepWrapper wrapper(repacc); // migrate to �le segment

admin = (listAdmin<T> *)repacc.start(); // admin object at start of segment
if (repacc.created()) { // �le created when mapped ?

repacc.resize(initSize); // initialize segment
new(admin) listAdmin<T>(repacc.size()); // initialize admin object

} // if
}

} // list<T>::list

~list() {
delete [] �leName;

} // list<T>::~list
}; // list<T>

Program 3.13:Linked List Class

3.4Programming Issues and Interfaces 107

into the new node, and chains the node onto the head of the list. The remove routine

removes the given node from the list and freesthe storage for the node. Theseroutines

make useof standard singly linked-list algorithms using pointers.

AccessClass

An accessclassde�nes the duration for which a �le structure segment is accessible.The

accessclass for the list �le structure, called listAccess, is shown in Program 3.14 and

provides routines to operate on the list. It is the sole means for the application code to

accesslist data. listAccess also contains per accessinformation, in a manner similar to a

UNIX �le descriptor.

The constructor of listAccess takes a referenceto a list classobject as an argument.

The reference is retained for subsequent accessto the list routines and a �le structure

mapping is established by creating a RepAccess object. The member routines add and

remove are covers for the corresponding routines in the list object whereasget and put

are cover routines that copy data out of or into the value �eld of a list node, respectively.

All these routines make the list segment accessibleby creating a RepWrapper object

before performing an operation on the list.

Generator

As discussed in section 3.3.3,a generator iterates over a data structure, returning some

or all of the elements of the data structure. Generators provide accessto the elements

of a data structure without having to useor accessthe particular data structure's imple-

mentation; hence,generatorsenforcethe notion of abstractdata types. Depending on the

data structure, there may be multiple generators that iterate over the data structure in

dif ferent ways and/or a generator may have several parameters that control the precise

108 Using the EPD Approach to Build a Single-Level Store

template <class T> class listAccess {
friend class listGen<T>;
friend class listWrapper<T>;

RepAccess<Rep> repacc; // access class for representative
list<T> &lst; // list being accessed

listAccess(const listAccess &); // prevent copying
listAccess &operator=(const listAccess);

public:
listAccess(list<T> &lst) : lst(lst), repacc(lst.�leName) {
} // listAccess<T>::listAccess

void add(char *value) {
RepWrapper wrapper(repacc);

lst.add(value);
} // listAccess<T>::add

void get(T *p, char *value) {
RepWrapper wrapper(repacc);

strcpy(value, p->value);
} // listAccess<T>::get

void put(T *p, char *value) {
RepWrapper wrapper(repacc);

strcpy(p->value, value);
} // listAccess<T>::put

void remove(T *p) {
RepWrapper wrapper(repacc);

lst.remove(p);
} // listAccess<T>::remove

}; // listAccess<T>

Program 3.14:List AccessClass

3.4Programming Issues and Interfaces 109

way the generator iterates over the data structure.

The list generator, as de�ned in program 3.15,has two constructors. The �rst con-

structor allows the speci�cation of a list accessobject and initializes the generator to the

beginning of the list. This constructor is employed when the generator object is going to

be used only oncefor one particular list object,as in:

for (listGen<myNode> gen(la); gen >> p;) { . . . }

The second constructor is employed to create a generator that is subsequently re-

initialized to work with a particular list accessobject, asshown in Program 3.16. In this

case,when the list generator object is created, it is not associatedwith a particular list

accessobject. The associationoccurs through the over member routine, which initializes

the generator to the beginning of the speci�ed list. Notice that the samegenerator object,

gen, is used to iterate over two dif ferent list accessobjects, la and ma, which may be

accessingthe sameor dif ferent lists; the only requirement is that both accessobjectsrefer

to lists that contain nodes of type myNode. Finally, the iterative operator >> is used to

extract the next place holder to an element in the data structure. While the place holder

may be declared to be a normal pointer, in general, it cannot be dereferenced in the

application program becauseit points into the list segment,which is not accessiblefrom

the application (exceptions to this rule are discussed next). Instead, the place holder is

used by other member routines in an accessobject to transfer element data out of or into

appropriate list nodes in the list segment.

Wrapper

Program 3.9 showed how an application can modify linked list data by copying data

out of a list node, changing it, and copying it back by invoking the accessclassroutines;

hence,the data is modi�ed indir ectly in the original list nodes. The reasonfor copying

is that a pointer returned by a list generator cannot be used in the application program

110 Using the EPD Approach to Build a Single-Level Store

template<class T> class listGen {
listAccess<T> *la;
T *curr;

listGen(const listGen &); // prevent copying
listGen &operator=(const listGen);

public:
listGen(const listAccess<T> &la) {

RepWrapper wrapper(la.repacc);

listGen::la = &la;
curr = la.lst.�rst();

} // listGen<T>::listGen

listGen() {
} // listGen<T>::listGen

void over(const listAccess<T> &la) {
RepWrapper wrapper(la.repacc);

listGen::la = &la;
curr = la.lst.�rst();

} // listGen<T>::over

int operator>>(T *&p) {
RepWrapper wrapper(la->repacc);

p = curr; // return current node
if (curr != NULL) { // if possible, advance to next node

curr = (T *)curr->next();
} // if
return p != NULL;

} // listGen<T>::operator>>
}; // listGen<T>

Program 3.15:List Generator

listGen<myNode> gen; // one generator
listAccess<myNode> la, ma; // two lists
. . .
for (gen.over(la); gen >> p;) { . . . } // generator used with different lists
for (gen.over(ma); gen >> p;) { . . . }

Program 3.16:Using the List Generator

3.4Programming Issues and Interfaces 111

sinceit points into the list segment,which is not dir ectly accessiblefrom the application.

As mentioned in Section 3.4.8,a wrapper is used to make the representative's address

spaceaccessible. This technique can be extended to the application program by pro-

viding a wrapper that makes the list segment dir ectly accessible;pointers from the list

generator can then be used dir ectly to modify data in list nodes, as shown in Program

3.17. A new block is started to de�ne the duration of the list segment accessand the

list wrapper is declared. Within the block, pointers returned from the generator can be

dir ectly dereferencedto read and modify the list node data. A substantial performance

gain can be achieved by this technique, becausethe list segment is only made accessible

oncefor all accessesto the list data and the copying of the list data is eliminated.

{
listWrapper<myNode> dummy(la); // make la's segment accessible

for (gen.over(la); gen >> p;) { // modify the list directly
process_string(p->value);

} // for
}

Program 3.17:Using a Linked List Wrapper

The list wrapper is de�ned in Program 3.18and is simply acover de�nition for declar-

ing a RepWrapper for the speci�ed list segment.

3.4.12 Programming Conventions

The simple generic linked-list illustrated all the basicconventions and tools for building

a persistent �le structure. The conventions are:

� The representativewrites a pointer to itself at the beginning of the newly mapped

segment.

112 Using the EPD Approach to Build a Single-Level Store

template<class T> class listWrapper {
RepWrapper wrapper;

listWrapper(const listWrapper &); // prevent copying
listWrapper &operator=(const listWrapper);

public:
listWrapper(const listAccess<T> &la) : wrapper(la.repacc) {
} // listWrapper<T>::listWrapper

}; // listWrapper<T>

Program 3.18:De�nition of a Linked List Wrapper

� All persistent administrative information is encapsulated into an administrative

object that is stored at the beginning of the segment. Further, the type of the ad-

ministrative object inherits from RepAdmin to ensure there is spacefor the back

pointer to the representative.

� A block is started before declaring a wrapper so that the wrapper 's action occurs

asthe �rst and last operations of the block.

� Only one accesswrapper can be declared in a block, becauseonly shared memory

and one segment'smemory can be accessibleat a time.

Eachbasic �le structure should provide the following classesat the application level: a

node abstract class,a �le structure class,one or more accessclasses,and (usually) one or

more generator classes.At the �le structure level, there is the administrative class.

3.4.13 B-Tree Example

The following example further illustrates advanced techniquesand tools, such asnesting

storage managers, for constructing a persistent data structure by building a generic B-

Tree �le structure. However, the basic structure of the B-Tree�le structures follows the

persistent linked list exactly.

3.4Programming Issues and Interfaces 113

B-Tree Application

Similar to the persistent linked list, the B-Tree makes available three data structures:

one to declare it (BTreeFile), one to accessit (BTreeAccess), and one to traverse it

(BTreeGen). The nodes of the B-Tree are not created dir ectly by users and, hence, this

structure does not exist. All these class de�nitions are parameterized on two classes

KeyType and RecordType to specify the types of the key and the data records, respec-

tively , for the B-Tree.

Program 3.19illustrates the usageof theseclassesto write a small application pro-

gram that createsa persistent B-Tree, inserts a number of records into the B-Tree and

�nally , retrieves the records from the B-Treein their sorted order. The program �rst de-

�nes a classRecord to describe the structure of the data records to be stored into the

B-Tree.The type of the key used to index the records in the B-Treeis the built-in type int.

In general,both KeyType and DataType can bede�ned asarbitrarily complex data struc-

tureswith the requirement that there exist an assignment operator that can be invoked

to copy objects.This requirement is necessaryso that records and keys can be copied to

and from shared and private memory.

Next, a comparison routine is de�ned to specify a function that takes two objectsof

type KeyType and returns a true or false value depending upon whether the �rst object

is “gr eater” or “smaller ” than the second. The comparison routine provides the mech-

anism necessaryto order keys in the B-Tree. In Program 3.19, the comparison routine

greater results in the records being arranged in descending order by their keys.

The program then createsthe B-Tree, if it does not already exist, with an initial size

of 30K by creating a BTreeFile object, db, which is passed as an argument to a newly

createdB-Treeaccessobject. Once the accessobjecthasbeencreated, its member routine

insert is invoked to insert a number of records into the B-Tree.Finally, a B-Treegenerator

114 Using the EPD Approach to Build a Single-Level Store

struct Record { // data record
�oat �eld1, �eld2;
Record &operator = (const Record &rhs) { // de�ne assignment

�eld1 = rhs.�eld1;
�eld2 = rhs.�eld2;
return(*this);

}
};

bool greater(const int &op1, const int &op2) { // key ordering routine
return op1 > op2;

}

void uMain::main() { // uMain is a uC++ artifact
BTreeFile<int, Record> db("testdb" , greater, 30 Kb); // create B-Tree
BTreeFileAccess<int, Record> dbacc(db); // open B-Tree
Record rec, *recp;

// insert records
for (int key = 1; key <= 1000; key += 1) {

rec.�eld1 = key / 10.0;
rec.�eld2 = key / 100.0;
dbacc.insert(key, &rec); // static type-checking

}

// retrieve records
for (BTreeGen<int, Record> gen(dbacc); gen >> recp;) {

. . . // process recp
}

}

Program 3.19:Example Program using a Generic B-Tree

object gen is invoked to retrieve the records stored in the B-Treein order.

Nested Memory Manager

As discussedin Section3.4.9,heapsmanagedby memory managerscanbenestedwithin

eachother. A B-Tree �le structure is a good example where nesting is needed. The �le

spaceis divided into uniform sized B-Treenodes managed by a uniform memory man-

ager. A variable memory manager is created within eachnode to manage the variable

3.4Programming Issues and Interfaces 115

sized B-Treerecords contained within the node (SeeFigure 3.10).

The administrative classfor the B-Tree,shown in Program 3.20,is de�ned in the same

manner asthe linked list structure in section3.4.10.Note that the classde�nitions in this

sectionare not presentedasgeneric classesfor simpli�cation of presentation. In practice,

these classesare parameterized in the types of keys and records. The administrative

classcontains a uniform memory manager and an expansion object for the manager.

class BTreeAdmin {
public:

Rep *rep; // initialized automatically
. . . . // at beginning of mapping
void *Root; // root node of the B-Tree
BTreeExpType expobj;
uniform<BTreeExpType> usm;

BTreeAdmin(int FileSize, char *TypeName, int BlkSize);
. . . .

}; // BTreeAdmin

BTreeAdmin::BTreeAdmin(int FileSize, char *TypeName, int BlkSize) :
expobj(*this),
usm((void *)this + sizeof(BTreeAdmin),

FileSize - sizeof(BTreeAdmin),
expobj,
BlkSize

) {
Root = NULL;

} // BTreeAdmin::BTreeAdmin

Program 3.20:Administrative Classfor the B-Tree

The expansion class is de�ned in Program 3.21. The expansion object attempts to

expand the size of the mapped �le by calling the representative's resize routine, which

is the typical action taken by the top level expansion object.

A B-Tree node can be used to hold B-Tree indices or data records. The former is

called an index node while the latter is called a leaf node. Both types keep their infor -

116 Using the EPD Approach to Build a Single-Level Store

BTreeAccessor

pointer to BTree

rep. accessor

BTree

pointer to compare routine

representative

pointer to B-Tree

segmentstoragemanager's data

16M B-Treesegment

B-TreeAdministration

uniform storagemanager's data

alignment boundary

uniform B-Treenode

variable storagemanager's data

variable record

uniform B-Treenode

variable storagemanager's data

alignment boundary

comparison routine

MAP
B-Tree
Disk
Image

alignment boundary

Figure 3.10:B-TreeStorageStructure

3.4Programming Issues and Interfaces 117

class BTreeExpType : public expand_obj {
BTreeAdmin &admin;

public:
BTreeExpType(BTreeAdmin &adm) : admin(adm) {};
int expand(int extension);

}; // BTreeExpType

int BTreeExpType::expand(int extension) {
admin.rep->resize(admin.rep->size() + extension);
admin.usm.sethsize(admin.rep->size() - sizeof(BTreeAdmin));
return 1; // retry allocation

} // BTreeExpType::expand

Program 3.21:Expansion Classfor the B-TreeStorageManager

mation within variable sized records managed by a variable memory manager. The leaf

node classBTreeLeaf is shown in Program 3.22and the expansion classfor the memory

manager vsm is shown in Program 3.23.

class BTreeLeaf {
friend BTreeLeafExpType;
BTreeLeafExpType expobj;
variable<BTreeLeafExpType> vsm;
. . .
void MoveRecords(. . .);
retcode SplitLeaf(. . .);

public:
BTreeLeaf();

}; // BTreeLeaf

BTreeLeaf::BTreeLeaf() : expobj(*this), vsm((void *)this +
sizeof(BTreeLeaf), NodeSize - sizeof(BTreeLeaf), expobj) {

. . . .
} // BTreeLeaf::BTreeLeaf

Program 3.22:B-TreeLeaf Node Class

Becauseall B-Treenodesare �xed size,a node cannot beenlarged when full. Instead,

the member routine SplitLeaf, shown in Program 3.24, within the BTreeLeaf class is

118 Using the EPD Approach to Build a Single-Level Store

class BTreeLeafExpType : public expand_obj {
BTreeLeaf &leaf;
. . . .
BTreeLeafExpType(BTreeLeaf &lf) : leaf(lf){}

public:
int expand(int);

}; // BTreeLeafExpType

int BTreeLeafExpType::expand(int) {
leaf.SplitLeaf(. . . .);
return 0; // done, give up allocation

} // BTreeLeafExpType

Program 3.23:Expansion Classfor the B-TreeLeaf Node StorageManager

called to split the node into two. First, the SplitLeaf routine allocates a new node by

calling the top level memory manager. Then, the treeis reorganized by moving someof

the data records into the newly createdempty node, thus making morespaceavailable in

the current node. Note that the leaf nodes in a B-Treeare usually chained together in the

form of a doubly-linked list. Existing generic linked list codecanbereusedto implement

linking of the B-Tree leaf nodes, thereby avoiding the need to implement linked lists in

B-Treecode.

retcode BTreeLeaf::SplitLeaf(BTreeLeaf *OldLeafPtr, . . .) {
// create a new node
BTreeLeaf *NewLeafPtr = new (SegZero->usm.alloc(NodeSize)) BTreeLeaf();
// move some records out the current node and into the new node
MoveRecords(OldLeafPtr, NewLeafPtr);
. . .
return 1;

} // BTreeLeaf::SplitLeaf

Program 3.24:Leaf Node Member Routine for Splitting

At the �le structure level, an access-methodimplementor makes calls to the lowest

level (variable storagemanagerBTreeLeaf::vsm) to allocaterecords asshown in program

3.5Analytical Modelling of the System 119

3.25. The variable storage manager in turn calls the higher level, BTreeAdmin::usm, if

necessary, asdescribed earlier.

retcode BTreeLeaf::InsertRecord(. . .) {

// call lowest level variable storage manager to allocate space within node
BTreeLeafRecord *FreeRecPtr = (BTreeLeafRecord *) vsm.alloc(/* leaf rec. size */);

. . .

} // BTreeLeaf::InsertRecord

Program 3.25:Leaf Node Member Routine for Inserting a New Record

3.5 Analytical Modelling of the System

Chapter 4 presents an experimental framework for studying �le structures based on

the EPD approach to memory mapping. Conducting experiments of this magnitude is

exorbitantly expensive in terms of both human and machine resources.Consequently, I

felt that an important research contribution could bemade to the study of EPDpersistent

storesby developing a mathematical model for the system. After surveying a number

of theoretical models for memory and I/O systems, none of the existing models was

found to represent the EPD system closely enough to make accurate predictions about

the behaviour of real experiments.

This section describeswork done towards the development of an accuratequantita-

tive model for an EPD system that can be employed to accurately predict performance

of algorithms in the EPD environment. A related goal is to investigate the behaviour

of databasealgorithms in a memory mapped environment basedon the EPD approach,

especially in highly parallel systems. I believe that results from this work should apply

120 Using the EPD Approach to Build a Single-Level Store

to other kinds of memory mapped single-level storesaswell.

The model can be used to analyze and study sequential and parallel algorithms on a

physical machine. My hope is that the model can act asa high-level �lter for data struc-

ture and algorithm designers to predict general performance behaviour without having

to construct and test speci�c approaches. Only those approachesthat look promising

from the model need to be more fully tested. Further, a quantitative model is an essen-

tial tool for subsystemssuch asa databasequery optimizer where the model canbeused

to compute costs for alternative execution strategies in order to plan optimal schemes

for executing speci�ed queries.

3.5.1 Survey of Related Work

The in�uences on this work stretch across many areas within computer science. The

following survey of the modelling literatur e is divided into two areas: theoretical I/O

modelling and other relevant studies on databasejoins, particularly in shared-memory

environments.

Theoretical Models

Classical theoretical models of computation in random accessmachines have, in recent

years,beenextended to cover hierarchical memories and the resulting I/O bottleneck as

well as spatial and temporal locality. This section presentsa brief survey of this work,

both in sequential and parallel shared-memory settings.

The classicalmodel of a RandomAccessMachine, or RAM [AHU83] consistsof a pro-

cessorexecuting instructions on data stored in a uniformly accessiblecollection of mem-

ory cells. The ParallelRandomAccessMachine, or PRAM [FW78] is an extension of RAM

for a parallel shared memory machine, which consistsof anumber of processorscommu-

3.5Analytical Modelling of the System 121

nicating through shared-memory. Eachprocessorhas accessto two types of memories:

local and shared (or global) and is capable of performing standard RAM operations as

well asreading and writing of cells in global memory. Thereareseveralaspectsof PRAM

that make it unsuitable as a practical model of computation. Nevertheless, the PRAM

has served asa useful platform for several subsequentmodels that are more realistic.

Re�nements of the older models have resulted in increasingly complex models. One

of the major problems with PRAM asa realistic model is its lack of distinction between

local and global memory [PU87, AC88]. The BlockPRAM, or BPRAMp�

� [ACS89], makes

this distinction by assigning dif ferent accesstimes to local and global memory, resulting

in a two-level memory. Further, a block sizebasedcostmodel is intr oduced by the notion

of start-up memory transfer costs – wor ds in local memory are uniformly accessible

whereas the cost of accessinga block of b contiguous cells in global memory is b
���

,

where
�

is the machine dependent latency. However, BPRAM like models fail to capture

the real life notion of a �xed block size and block boundaries. Mor eover, by its very

nature, the two-level model doesnot account for dif ferential costsin accessingdif ferent

sectionsof memory from the point of view of multiple processors.

Further models have recently been proposed for multi-level memory [AACS87,

ACS87, ACFS94],both in the sequential and parallel settings. In the HierarchicalMemory

Model, a hierarchical organization of memory cells is modelled by assigning accesstime

for location x as f
�

x � , for functions such as f
�

x� � logx and f
�

x� � xa [AACS87]. Block

transfer capability is added to the basicmodel by computing the costof accessinga block

of b bits starting at location x as f
�

x�

�

�

b � 1� [ACS87]. The notions of block transfer and

hierarchy are developed further by modelling the memory as a treeof modules, where

computation takes place at the leaves [ACFS94]. In this model, data is transfered be-

tween modules by buses;parameters of the model include size of blocks, bandwidths of

buses,and branching at eachlevel.

122 Using the EPD Approach to Build a Single-Level Store

I/O complexity models [HK81, AV88, VS94a, VS94b] take a slightly dif ferent ap-

proach,e.g.,Aggarwal and Vitter [AC88] consider a two-level memory model in which

a single CPU communicates with a single disk; several blocks of memory can be trans-

ferred in a single I/O operation. Vitter and Shriver [VS94a, VS94b]changed this model

so that secondary storage consists of several disks and each disk can transfer a single

block in one operation.

The memory mapped analytical model presentedin this chapter draws on ideasfrom

several of the above papers, though the intent is not to characterize the complexity of

problems, but rather to predict performance on many real architectures.

Database Studies

Many databasemodelling efforts related to this work use the join algorithm for analysis

and validation purposes. Joining is a merging of data from two collections of data ob-

jects,R and S, where an R object contains a join attribute that refers to an S object, and

data from eachis combined to form the join.

This work builds on the framework proposed by Shekita and Carey [SC90], which

presentsan analytical single-processor, single-disk model that can be viewed as a sim-

pler version of my subsequentmultipr ocessor, multi-disk model. In their model, three

pointer -basedjoin algorithms are analyzed: nested loops, sort-merge and hybrid hash.

However, no experimental data is presentedto validate their model.

Shekita and Carey make a number of simplifying assumptions some of which are

removed or modi�ed in my analysis. For instance,for joining of a relation Rwith another

relation S, they assumethat every object in relation Sis referencedby exactly one object

in R. While my analysis retains this assumption, it leavesopen the possibility for a one-

to-many relationship between the two relations. They assumethe costof I/O on a single

byte to be a constant, not taking into account seek times or the possibility of savings

3.5Analytical Modelling of the System 123

using block transfer; they do not distinguish between sequential and random I/O; they

do not consider the fact that the minimum I/O transfer unit on virtually all computers

is at least a disk sectorand more commonly a virtual memory page.

Two assumptions made in their paper need to be extracted from the analysis:

constant-time hashing, and clustering of identical referencesin a single hash chain dur -

ing the hybrid-hash algorithm so that a given object from S need only be read once to

perform the join. My analysis replacesthe secondassumption with a weaker assumption

that all of the objectsof Sreferencedin one hashchain can �t into the portion of memory

not used by the hash table. In the traditional hybrid-hash algorithm, only one object (or

one block) of Sis presentin memory at any given time.

Shapiro [Sha86] analyzessort-merge and threehash-basedalgorithms and also pro-

vides a discussion of various memory management strategies. Again, no experimental

data is provided to validate the model.

Lieuwen, DeWitt and Mehta [LDM93] analyze parallel versions of Hash-Loops and

Hybrid-Hash pointer -basedjoin algorithms (seesection5.1)and compare them to a new

algorithm, the Probe-child join algorithm. Their work also builds upon Shekita and

Carey [SC90] but has a dif ferent emphasis from my work in that I develop a validated

model for a shared memory architecture basedupon the EPD approach.

Martin, Larson and Deshpande [MLD94] present a validated analytical model for

a multi-pr ocessor, single disk situation. Their model makes a number of assumptions

that can intr oduce unpr edictable amounts of both positive and negative error. For in-

stance,the assumptions of perfect inter-processparallelism and perfect processing-I/O

parallelism tend to decreasethe model's estimate of elapsedtime, but the assumption of

maximum processorcontention for spin locks tends to increasethe estimate.

I have extended the work in the above papers in several ways: by allowing multi-

ple processorsand multiple disks (resulting in further algorithm design decisions in the

124 Using the EPD Approach to Build a Single-Level Store

course of parallelizing the standard join algorithms), by drawing a distinction between

private and shared memory, and of course by using an EPD environment. The paral-

lelization used in my algorithms has been in�uenced by ideas presented in [SD89]. In

addition, my analysis is quantitative asopposed to the qualitative analysis in other mod-

els. The model usesmeasured parameters that quantify the computing environment in

which the join occurs,such ashow disk I/O is affected by all aspectsof the join.

Munr o, etal [MCM
�

95] have, quite recently, reported someearly work on validating

an I/O cost model, called MaStA, for databasecrash recovery mechanisms. Like this

work, MaStA takes into account the peculiarities of a persistent system and attempts to

provide more realistic and �ner grained estimation of I/O coststhan previous attempts.

One of the major areas where MaStA dif fers from this work is the modelling of disk

transfer time, dtt
�

� (seesection 3.5.2).MaStA divides the I/O costsinto a number of dif-

ferent accesspattern categories(sequential, asynchronous, clustered synchronous, etc.)

with eachcategory assigneda dif ferent cost model. The � Database model, on the other

hand, estimates I/O costs on the basis of a single uni�ed cost model. The amortized

costmodel developed in this work implicitly incorporates effectsof disk accesspatterns

by de�ning average cost as a function as opposed to a constant. Both models work by

assigning an averagecost per disk accessfor a speci�c I/O category. In the � Database

model, the averagecost function, dtt
�

� , is obtained by experiment. Finally, MaStA con-

centratesexclusively on I/O costswhereasthe � Database model models CPU costsas

well. It is my experiencethat in a databasecomputation, while the CPU costsare usually

not dominant, they can be quite substantial.

3.5.2 Modelling

This section presentsthe basicmodel, developed for EPD basedsystems,and its param-

eters. The model has as components a number of processes,each having its own seg-

3.5Analytical Modelling of the System 125

ment with a private areaof memory, a shared areaof memory accessibleto all processors

through which communication takesplace,and a number of disks allowing parallel I/O.

The parameters of the model are shown in �gur e 3.11 and table 3.1.

Private MemoryShared MemoryPrivate Memory

Pi Pj

B B

CS

P

MTsp MTps

MTss MTpp

D

dtt dtt

MSHMPi MPj

Figure 3.11: BasicStructure of the Analytical Model

The parameter D usually refers to the number of disk controllers, not disks, since

there is a one-to-many relationship between controllers and disks (seeresults in section

4.4concerning performance effects from disk controllers). When simultaneous requests

arrive for the samedisk, the disk arbitration mechanism is left unspeci�ed. Alternatives

for futur e re�nement of the model include denying algorithms simultaneous access,se-

rializing overlapping requests,and a priority schemefor simultaneous requests.

Memory transfer times are given in the form of combined read/write times because

126 Using the EPD Approach to Build a Single-Level Store

Parameter Description

P number of processesused by a given algorithm

CS amount of time for a context switch from one processto another

M number of bytes of memory, private and shared

MPi number of bytes of private memory used by processPi

MSH number of bytes of shared memory available for use to P processes

B size, in bytes, of a block or page of virtual memory

D number of disks that can be operated in parallel

dtt disk transfer time

dttr disk transfer time – read

dttw disk transfer time – write

MTsp shared to private memory transfer time

MTss shared to shared memory transfer time

MTps private to shared memory transfer time

MTpp private to private memory transfer time

newMap time to createa mapping for new areaof disk

openMap time to createa mapping for existing areaof disk

deleteMap time to destroy mapping aswell asdisk area

Table 3.1: Parametersof the Model

all segment transfers move data using assignment statements, which read and then

write. Furthermor e, thesetransfer times canbe used even if the architecture implements

an explicit block move instruction that doesnot dir ectly involve processregisters;in this

case,the transfer time may be parameterized by the length of the move becausea block

move may be more ef�cient for longer transfers. As an example of the use of memory

transfer times, if one processtransfers k bytes from shared memory to private memory,

this takes time k � MTsp. For machine with block move instructions, this time could be

MTsp
�

k � .

3.5Analytical Modelling of the System 127

Disk Transfer Time

Modelling disk transfer is complex becauseit is a function of the data accesspattern

due to the inherent sequentiality of the components of a disk access. The nature of

join algorithms is such that data accessis clustered into contiguous bands on the disk

during certain parts of an algorithm. Intense (random or sequential) I/O occurs in a

band followed by similar I/O occurring in the next band and so on. This clustering of

accessesis modelled by measuring the averagecost per block of sequentially accessing

bands in which random accessoccurs, over a large area of disk. The size of the disk

area is irr elevant; it only has to be large enough to obtain an averageaccesstime for the

band size. The layout of data on disk is always given to explain the band size in further

algorithmic discussion.

In general, the disk transfer time function, dtt, has two arguments: the unit of data

transfer, and the span, in blocks, over which random disk accessestake place, i.e., the

sizeof the band. In the physical machine used for this work, the �rst argument is always

B, the virtual memory page size; therefore, the �rst argument of dtt is dropped from all

of the subsequent formulas, i.e., dtt is considered to be a function of band size alone.

Figure 3.12(a)shows the averagetime, for the SequentSymmetry used for experiments

(seesection 5.5.1),to transfer a block (4K) to or from disk with respectto a given band

size. When the band size is one,accessis sequential; when the band size is greater, access

is random over that area. Thus, average time increasesas the band size increases.One

curve is for random reading in a band with no repetition of blocks; the other curve is for

random writing in the band with no repetition of blocks. One might intuitively expect

the read and write times to be identical. However, while a read page fault must causean

immediate I/O operation, writing dirty pagescanbedeferred allowing for the possibility

of parallel I/O and optimization using shortest seek-time scheduling algorithms. Thus,

128 Using the EPD Approach to Build a Single-Level Store

writes, on average, cost less than reads. The two curves are used to interpolate disk

transfer times for reading, dttr , and writing, dttw, respectively. Both dttr and dttw are

machine-dependent and must be measured for the physical environment in which the

join is executed.

It needsto be emphasized that the band size in the dtt functions is the not the logical

span in the databaseover which accessestakesplace but rather the actual span on disk.

In other wor ds, the argument to the dtt function has to take into account the actual

layout of the database�le on disk (which includes non-contiguous layout of data by the

operating system). In order to measure the dtt curves shown in �gur e 3.12(a),the test

�le is laid out contiguously on disk so that the logical bands in the �le also correspond

to similar bands on disk.

Finally, the shape of the dtt curves is determined by two distinct phenomenon,

namely, the number of times the disk arm changes dir ection, which is an expensive

operation, and the total amount of distance traveled. The latter increaseslinearly, after

a threshold value is reached,with band size and is re�ected in the rise in the dtt values

in the upper portions of the curves. The total number of times the disk arm changesdi-

rections increasesvery rapidly when the band size is increasedfrom 1 but soon reaches

a saturation value and stays relatively constant after that. This behaviour is the main

causeof the initial growth of the dtt curves in �gur e 3.12(a).

Memory Mapping Costs

The costof threefundamental memory mapping operations, namely, creating a mapping

for a new areaof disk, establishing a mapping to an existing areaof disk, and destroying

a mapping aswell as its data in an existing areaof disk, is modelled by threemeasured

functions, newMap, openMap and deleteMap. Eachof thesefunctions takesthe sizeof the

mapping asan argument.

3.5Analytical Modelling of the System 129

5

10

15

20

25

0 10000 20000 30000 40000 50000

T
i

m
e
p
e
r

B
l
o
c
k

Band Sizein Blocks

dttr
dttw

(a) Disk Transfer Time (in msecs)

0

10

20

30

40

50

0 10000 20000 30000 40000 50000

T
o
t
a
l

T
i

m
e

Map Sizein Blocks

newMap
openMap

deleteMap

(b) Memory Mapping Setup Time (in secs)

Figure 3.12:Measured Machine Dependent Functions (for a SequentSymmetry running
DYNIX 3.1with Fujitsu M2344K and M2372K disk drives)

130 Using the EPD Approach to Build a Single-Level Store

Figure3.12(b)shows the measured values, for the SequentSymmetry used for exper-

iments (seesection 5.5.1),of memory mapping costs. All mapping costs increasewith

sizebecauseconstructing the pagetable and acquiring disk spaceincreaseslinearly with

the size of the �le mapped. New mappings are more expensive than existing mappings

becausenew disk spacemust be acquired. Deleting is the least expensive becauseonly

the storage for the page table and disk spaceneed to be freed.

In absolute terms thesecostsare very high and constitute a signi�cant performance

problem. However, the high cost is mostly a function of the particular memory mapping

implementation in DYNIX and of the slow hardwar e. Measuring the same costs on

a SUN SPARCserver 670MP running the SunOS5.3 operating system results in much

smaller values, e.g., the cost of creating a new mapping of 50,0004K blocks on the SUN

machine is lessthan 0.1second.

3.5.3 Using the Model to Analyze an Algorithm

Chapter 5 contains a discussion on the design of threeparallel join algorithms that were

implemented and analyzed by means of the model presentedearlier. This section out-

lines the general procedure for analyzing a given algorithm within the framework of the

model. The analysis can be used to predict the performance of the algorithm on a phys-

ical machine. The speci�cs of the physical machine are incorporated into the analysis

by meansof the measured parameters such asdisk transfer time and memory mapping

costs. Additional parameters can be added as needed to analyze the given algorithm,

e.g., in order to analyze heap-sort the cost of inserting and removing an element from

the heap of pointers in memory must be measured. Once all the required parameters

have been compiled and their values determined, they can be used for computing the

costsof the individual stepsperformed by the algorithm.

One of the expensive activities in a databasealgorithm is I/O cost, which can vary

3.6Summary 131

substantially depending upon how the algorithm accessesdisk blocks. As such, it is

essential to identify the patterns of disk accessin various steps or phasesof the algo-

rithm. After determining the nature of I/O in a particular phase of an algorithm, the

appropriate dtt formulas are applied to compute the I/O cost of the speci�c phase. The

nature of I/O for a phaseis determined not only by the total amount of disk blocks read

and written, but also by the type of disk access(sequential or random) and by the span

of disk over which the I/O takes place. Finally, the memory, CPU and I/O costsof the

various phasesof the algorithm are summed, asappropriate, to predict the total cost of

the algorithm on the physical machine. Any parallelism in the algorithm is accounted

for by computing the serial cost of computations that occur in parallel.

3.6 Summary

The design of � Database is motivated by a desire to eliminate the complexity and ex-

pense of swizzling pointers, support persistencewithin a compartmentalized view of

persistent objectsin which individual programs are allowed to simultaneously manipu-

late data stored in multiple collections, and follow the software approach basedon con-

ventional architectures for its immediate accessibility and portability . This work iden-

ti�es and quanti�es some components of a persistent system that are quite dif �cult or

inef�cient to construct with conventional operating system and hardwar e support. The

support for multiple persistent areasis provided by employing the notion of hardwar e

segments, which are implemented on conventional architectures by a novel usage of

Unix processes.This chapter also illustrated the programming interfaces and conven-

tions used for developing applications in � Database. The easewith which powerful pro-

gramming techniques such as polymorphism and storage management can be applied

to persistent aswell as transient data is amply demonstrated in the process.The lack of

132 Using the EPD Approach to Build a Single-Level Store

support at the compiler level meansthat programming in the current stageof � Database

relies on certain conventions being strictly followed. The � Database programming in-

terfacescan be simpli�ed and made more secure by providing some language support,

which is also needed for implementing serviceslike recovery control (seechapter 6).

Presenting a generic concurrent retrieval algorithm for partitioning �le structures

demonstrateshow parallelism canbeexploited easily and naturally in the EPDapproach.

For instance,by mapping various partitions of a �le structure into a single addressspace,

many partitioning issues are made transparent to the executing program, resulting in

code that is lesscomplex and more ef�cient. Finally, this chapter presentedthe design

and development of a quantitative analytical model of computation in the EPD environ-

ment. Once validated (seechapter 5), the model can be used to predict the performance

of speci�c algorithms as the system and data parameters are tweaked, resulting in sig-

ni�cant bene�ts when studying new algorithms.

Chapter 4

Experimental Analysis of EPD File

Structures

One of the important goals of this work is to demonstrate the feasibility and viability of

the EPDapproachto memory mapped �le structures.The most effective way of doing so

is to design and construct illustrative EPD �le structuresand run experiments on them

using a tightly controlled test bed.

As mentioned earlier, many of the traditionally cited reasonsfor rejecting the use

of mapped �les are no longer valid, and compelling arguments have been made for

the use of memory mapped single-level stores for implementing databases. Further,

memory mapping techniques can be used advantageously not only for complex data

structuresbut also for simpler traditional databasestructures.Traditional databasescan

beaccessedusing memory mapped accessmethods without requiring any changesto the

existing data. It is my thesis that memory mapping techniquescan provide performance

comparable to traditional approacheswhile making it much easierto construct, maintain

and augment the accessmethods of a �le structure (i.e., to support extensibledatabases)

by greatly reducing program complexity. In spite of all these arguments, there is still

resistanceand skepticism in the databasecommunity to memory mapping. One reason

for this skepticism is the lack of hard data to support arguments in favour of memory

133

134 Experimental Analysis of EPD File Structures

mapped �le structuresand their accessmethods.

At the beginning of this work, no major undertaking to conduct experiments on a

memory mapped storagesystem had beenreported and there was no experimental evi-

denceavailable to support the view that memory mapped �le structurescould perform

aswell asor better than traditional �le structures.Therefore, to demonstrate the feasibil-

ity of the EPD approachto memory mapping, I decided to implement several illustrative

�le structuresusing both the EPD approach and the traditional buffer management ap-

proach. The performance of these�le structuresin the two environments was measured

and compared. For this purpose, an experimental testbed was designed and imple-

mented. The testbed allowed the experiments to be conducted in a tightly controlled

environment and was employed to make reliable performance measurements.

In addition to conducting experiments on sequential �le structures, it was also de-

cided to study the behaviour of partitioned �le structuresin an EPD environment since

parallel accessmethods representan important and active area of research in database

technology. Two of the sequential single-disk EPD �le structureswere partitioned by us-

ing data striping techniques and algorithms were designed to perform parallel queries

on thesestriped structures.Experiments were conducted to study the bene�ts obtained

from data partitioning and parallel accessmethods in the memory mapped environ-

ments basedon the EPD approach.

All these experiments are an important and somewhat unique aspect of this work

that hasbeenwell receivedby other researchersworking in this area [BGW92]. In addi-

tion to demonstrating the effectivenessof the EPD approach, this work establishesthe

beginnings of benchmarks against which other work in the area can be evaluated. The

restof this chapter presentsthe design of the experimental testbedand various �le struc-

tures,the experiments conducted on the testbed and an analysis of the results obtained.

4.1Testbed 135

4.1 Testbed

4.1.1 Hardware/Software Platform

All the experiments presentedin this dissertation were conducted on a 10-processor(In-

tel i386)SequentSymmetry [Sym87], a shared-memory symmetric multi-pr ocessor, run-

ning the DYNIX 3.1 operating system. The system contained 64M of physical memory,

oneSequentdual-channel disk controller (DCC) and eight Fujitsu M2344K/M2372K disk

drives. The DYNIX operating systemusesa simple pagereplacementalgorithm that em-

ploys a FIFO queue per page table augmented by a global LRU cacheof replaced pages

so there is a secondchanceto recover a memory frame before it is reallocated. In order

to analyze the experimental results, it is important to understand the organization of the

DCC and the DYNIX page replacement algorithm. Therefore, a summary of these two

aspectsis presentedbefore describing the other details of the testbed. The information

presentedin sections4.1.2and 4.1.3has beenderived from the SequentSymmetry tech-

nical summary guide [Sym87]. Also, �gur es4.1and 4.2have beenreproduced from the

samesource.

4.1.2 Sequent Dual-Channel Disk Controller (DCC)

The Sequentdual-channel disk controller (DCC) controls 8 disk drives using the SMD-

E (StorageModule Drive – Extended) disk interface. Transfer of data to and from the

disks takes place at bursts of up to 3 megabytes per second. The DCC provides two

independent data channels,eachof which connects4 disk drives to the system bus. The

dual-channel design, depicted in �gur e 4.1,allows two drives, one on eachchannel, to

transfer data simultaneously in each dir ection. All drives are capable of simultaneous

seeks. The drives are connected to the data channels of the DCC via two multiplexors,

with eachmultiplexor connecting two drives eachto the two channels.

136 Experimental Analysis of EPD File Structures

Channel A

Channel B

SYSTEMBUS

Dual-channel

Disk

Controller

Disk 6 Disk 4

Disk 7 Disk 5 Disk 3

Disk 2 Disk 0

Disk 1

Multiplexor 1 Multiplexor 2

Figure 4.1:SequentDual-channel Disk Controller (DCC)

4.1.3 DYNIX Virtual Memory Implementation

DYNIX employs the virtual memory management implementation �rst used in the

VAX/VMS operating systemfor the VAX-11/780 (see[LL82] for details of the VAX/VMS

implementation). At boot time, the DYNIX kernel allocatesphysical memory for itself

and its basicdata structures.The remaining pagesof physical memory are inserted into

a queue called the freelist. All memory needed for user processesis taken from the free

list. When a processstarts executing, the pagesof virtual memory it needs are loaded

on demand at page fault time. Eachprocesshas a residentset, which consistsof the list

of physical memory pagesallocated to that process.The maximum size of the resident

set for eachprocessis limited, to prevent any one processfrom monopolizing physical

memory, and can be speci�ed by invoking a system call; otherwise the operating sys-

tem usesa heuristic to determine the maximum resident set for the process.During the

initial �urry of page faults after a processstarts executing, the processobtains physical

4.1Testbed 137

memory by depleting the free list (see�gur e 4.2(a)1). After the resident set is �lled up,

however, the page replacement algorithm is invoked at page fault time to trade a page

from the resident setwith one from the free-list (see�gur e4.2(b)).When pagesareadded

to the free list, they go to the tail of the list. A page that is not reclaimed by its process

eventually reachesthe head of the freelist and is claimed by a new process.

Free
List

M8

P40

B8

B9

P12

M7 A6A1

A2

A3

A4

A5

Resident Set
ProcessA's

(not yet full)

(a) Filling the Resident
Setof ProcessA

A1

A2

A3

A4

A5

Resident Set
ProcessA's

(full)

A6

A7

A8

Free
List

M12 A9

M13

P42

B10

A4

P43

FIFO
Pointer

(b) Page A4 moved to the
free list to make room for
page A9

A1

A2

A3

A9

A5

Resident Set
ProcessA's

(full)

A6

A7

A8

Free
List

B10

M14

A5

A4

P42

P43

(c) Reclaiming page A4

Figure 4.2: DYNIX PageReplacementAlgorithm

1The letter in a page label indicates a processthat owns the page and the following digits indicate the
page number within the addressspaceof the process.

138 Experimental Analysis of EPD File Structures

The pagereplacementalgorithm is a modi�cation of FIFO and is implemented with a

pointer per processthat cyclesthrough the pagesof the resident setof a process.When a

pagefault occurs,the pageindicated by the pointer is swapped with a pagefrom the free

list. A record is maintained of all the pagesa processhas placed on the free list. If one

of thesepagesis referencedagain by the process,the resulting page fault, called a minor

pagefault, simply reclaims the page from the freelist (see�gur e 4.2(c)),thereby avoiding

the need to read the page from disk. By contrast, a major pagefault results in reading

the faulted page from disk. Thus, page faults in �gur es4.2(a)and 4.2(b)are major page

faults while the one in �gur e 4.2(c)is a minor page fault. Oncea page is brought back to

the resident set, it is not replaceduntil the FIFO pointer makesanother passthrough the

resident set.

To handle pagesmodi�ed during execution, the aboveprocessis modi�ed slightly by

the intr oduction of another queue called the dirty list that works in a manner similar to

the free list. If a page being replaced has beenmodi�ed during execution, the page gets

added to the dirty list instead of the freelist. When freememory gets low, an operating

system daemon processwrites out a subset of the pages in the dirty list to disk and

transfers thesepagesto the freelist asclean pages.

4.1.4 Experimental Testbed

The testbed designed and developed aspart of this work allows experiments to be run

in a controlled environment. In test mode, the only activities taking place on the system

are the onesconcerning the experiment. Thus, the experiments run without any external

interference. This environment was made possible by the following manipulations of

the DYNIX operating system mechanisms.

During test mode, the system runs in its normal multi-user mode but all operating

system servicesexcept the ones needed by the experiments are disabled or shut down,

4.1Testbed 139

which includes disabling external login, and all network services.

The parameters that can be controlled by the experimenter include:

Maximum resident set: The maximum resident set for each individual processcan be

speci�ed at run time, which controls the maximum amount of real memory avail-

able to the experiment during execution. Upon exceeding that size, the page re-

placement algorithm described in section 4.1.3is invoked to make room for a new

page.

Total amount of free physical memory in the system: Due to the nature of the DYNIX

virtual memory implementation and to avoid working with extremely large

databases,it was important to control the total amount of free memory available

to the experiment. This restriction was achieved by using non-swappable memory

blocking programs. A blocking program causesa speci�ed amount of physical

memory to be allocated and goesto sleep. Becausethe blocking program is made

non-swappable, the physical memory allocated to it is not available for any other

computation; it is asif that memory was not in the system.

During experiments, the total freememory was kept at a level that left a very

small amount of freememory in the global cacheafter memory had beenallocated

to the executing processes.This strategy allowed the processesto continue execu-

tion while ensuring that the experiment did not bene�t from any extra available

memory in the global cache.

During experiments, the virtual memory system was tuned (by meansof the vmtune

facility of DYNIX) to reduce the size of global free memory as much as possible and

to turn off operating system optimizations such as disk read-aheads. Someadditional

changesmade subsequently to the testbed are described in section 5.5.1.

140 Experimental Analysis of EPD File Structures

For parallel experiments presentedin this dissertation, a maximum of 4 disks, with

one disk attached to eachside of the two multiplexers of the DCC, were used. This con-

�guration allowed the experiments to make parallel use of the 4 disks. Note, however,

that there were only two channels with two disks on each channel, which intr oduced

somecontention for data transfer.

4.2 Experimental Structure for Feasibility Studies

Severalexperiments wereconstructed to demonstrate the feasibility of the EPDapproach

to memory mapping. The general form of an experiment is to implement a �le structure

in both the traditional and the EPD styles, createand populate the �le structures,mea-

sure performance of retrievals from the �le structures,and compare the results. While

every effort was made to keep the two types of �le structuresassimilar aspossible,some

systemlimitations precluded absolutely identical execution environments. In particular ,

the traditional �le structuresare accessedthrough a custom built LRU buffer manager

that performed raw I/O to and from disk. DYNIX does not support memory mapping

using raw I/O, and therefore, regular �le system I/O is employed for the EPD �le struc-

tures. Separateexperiments were conducted to ensure that memory mapping through

the �le system did not result in any advantages due to buffering; it was found that a

mapped �le does not make use of �le system buffers. To make the comparisons equal,

all �le structuresused 8K node sizesand all I/O was performed in 8K blocks.

In order to use the experimental testbed described in section 4.1, the following gen-

eral steps are taken. First, a set of blocking programs are run whose only purpose is to

reduce the amount of available physical in the system so that it is just enough to be the

total amount of memory neededfor an experiment. The blocking programs sleepduring

the experiment so asnot to causeany interference.After the amount of available system

4.3Sequential File Structures 141

memory has beenreduced to the desired level, the DYNIX limit command is used to re-

strict the maximum resident setsize for the program(s) constituting the experiment. The

experiment is run in this restricted environment. The DYNIX ptime utility is employed

to obtain performance measurements such as the number of page faults and elapsed

time for the program. If it is necessaryto measure the performance of the individual

phasesof the program, appropriate system calls are embedded into the program code.

For example, getusclk() can be invoked to accessthe micro-secondclock.

The traditional �le structures were implemented on top of the LauRel database

[Lar88]. The DYNIX pagereplacementalgorithm (seesection4.1.3)was matched against

the custom-built LRU buffer-manager used by LauRel. Experiments were run both

stand-alone to preclude external interference and on a loaded machine. The amount

of memory available for the experiment and total freeglobal memory were tightly con-

trolled using blocking programs so that both types of �le structureshad exactly the same

amount of buffer spaceduring execution.

The test �le structures varied in size from 6 to 32 megabytes. The total amount of

primary storageavailable for the experiments was restricted to keep the ratio of primary

to secondary storage as1:10and 1:20respectively for two dif ferent setsof experiments.

Thus, primary storage for the experiments ranged in size from .6M to 3.2M and .3M to

1.6M. Theseprimary to secondary storage ratios are common in the current generation

of computers, supporting medium (0.1G-.5G)to large databases(1G-4G) but not very

large databases(1T).

4.3 Sequential File Structures

In order to show that the EPD approach to memory mapping is suitable and ef�cient for

the implementation of traditional (pointer -less)and complex (incorporating many point-

142 Experimental Analysis of EPD File Structures

ers)data structuresalike, experiments wereconducted on a pre�x B
�

-Tree[BU77] and an

R-Tree [Gut84], which are pointer -less,and a complex network graph structure, which

contains many pointers. In each case,the cost of performing representative queries or

traversals was measured in a controlled environment. The results, presented in sec-

tion 4.4,demonstrate that the EPD structuresperform quite admirably when compared

against their traditional counterparts.

This sectionpresentsthe sequential single-disk �le structuresimplemented for exper-

imentation and the details of the actual queries performed on individual �le structures.

The queries are designed to cover many realistic accesspatterns.

4.3.1 Pre�x B
�

-Tree

The pre�x B
�

-Tree[BU77] is a well studied and widely used data structure for maintain-

ing indexes, and, assuch, was an ideal candidate for inclusion in this study.

For the experiments with the B
�

-Tree, 100,000uniformly distributed records were

generated whose (order) keys were taken from the unit interval. Records had variable

lengths with an average length of 27 bytes. The records were inserted into a pre�x B
�

-

Treein the order of their generation, i.e., the records were inserted into the B
�

-Tree in a

uniformly distributed order of their keys. For the resulting B
�

-Tree,four dif ferent query

�les were generated, each �le requiring that 10,000records be read in total in response

to a collection of range queries of a given size. An individual query in each �le was

speci�ed by a random key (based on a uniform distribution) and a �xed number of

records (the size of the range query) to be read sequentially starting from the speci�ed

key. In the rest of this chapter, eachof the four query �les is described by a tuple <n,m>

where n is the total number of queries in the �le and m is the size of each query. For

example, <10,1000> implies 10queries of size1,000records each– the query �le consists

of 10keys from a uniform distribution and, for eachkey, the experiment searchesfor the

4.3Sequential File Structures 143

key in the B
�

-Treeand then reads1,000data records sequentially by following the leaf

node links of the B
�

-Tree.

An additional �fth query �le contained 10,000exact match queries obtained from

a normal distribution with a mean of 0.5 and a variance of 0.1. For each query in this

�le, the experiment searched for the speci�ed key in the B
�

-Treeindex and retrieved the

corresponding data record.

4.3.2 R-Tree

The R-Tree [Gut84] is a data structure and an accessmethod for multi-dimensional ob-

jects (e.g., points and regions) and is used for representing spatial data, e.g., in geo-

graphical information systems. An R-Treeis a natural extension of the B-Treefor multi-

dimensional data. This discussion is restricted to 2-dimensional objects, referred to as

2-dimensional rectangles.

A 2-dimensional rectangle is a tuple containing two (x,y) pairs, which denote the

lower -left and the upper-right corners of a rectangular area in a 2-dimensional space.

Thus, a 2-dimensional rectanglemight be used to representan area on a planar surface

while a 3-dimensional rectangle might represent a box in space. The structure of an

R-Tree is similar to that of a B
�

-Tree except that the leaf nodes, called data nodes, of

an R-Treecontain pointers to data rectangleswhile index nodes,called dir ectory nodes,

contain minimum bounding rectanglesinstead of keys. A minimum bounding rectangle

for a given setof rectanglesis the smallest sized rectanglethat completely enclosesall the

rectanglesin the given set (see�gur e 4.3);a rectangleis said to encloseanother rectangle

if the former overlaps the latter along each dimension. Thus, an index entry in an R-

Tree dir ectory node consists of a pointer to a next level (data or dir ectory) node and a

rectangle,which is the minimum bounding rectangle for all rectanglescontained in the

sub-tree rooted at the referent next level node. The R-Tree supports point queries and

144 Experimental Analysis of EPD File Structures

several types of window queries. A point query on an R-Treeasksfor all rectanglesthat

cover a given query point whereasa window query asksfor all rectanglesthat enclose,

intersector are containedin a given query rectangle. An R-Treewindow query is similar

to a B
�

-Treerange query. However, in terms of data access,there is one basicdif ference:

index pagesare accessedmore frequently and involve much more computation for the

R-Treethan for the B
�

-Tree.

Minimum Bounding Rectangle

(a)

Minimum Bounding Rectangle

(b)

Figure 4.3:Minimum Bounding Rectanglesin an R-Tree

For the R-Tree experiments, a 2-dimensional R-Tree was implemented in both the

traditional and the EPD environments. The maximum number of entries in individual

R-Treenodeswere limited to 450in data nodes,and 455in dir ectory or index nodes. Each

R-Tree was populated with data obtained from a standardized testbed [BKSS90]. The

data consistedof 100,0002-dimensional rectangleswhereeachrectangleis assumedto be

in the unit cube [0,1]2. The centresof the rectanglesfollow a 2-dimensional independent

4.4Results and Analysis of Experiments on Sequential File Structures 145

uniform distribution; see[BKSS90]for further details of the test data. The query �le used

for the experiments was also taken from the same testbed and consisted of 1000point

queries and 400eachof the enclosement,intersection and containment window queries.

4.3.3 Network Graph

To simulate accesspatterns found in complex non-traditional data intensive applications

(e.g.hypertext or object-oriented databases),a large dir ectedgraph was constructed con-

sisting of 64,000nodes of size 512bytes each. The nodes were grouped into clusters of

64nodes each;the nodes within a cluster were spatially localized on secondary storage.

An edge going out from a node had a high probability (85%,90%or 95%) of referenc-

ing another node within the samecluster. Inter-node edgeswere paired with randomly

selectednodes. Figure 4.4illustrates this structure. Eachexperiment consistedof 40ran-

dom walks within the graph; eachwalk traversed 500edges.Thesetraversals simulated

a CAD/CAM system where multiple users accessa particular part and then accessthe

part information in dif ferent ways.

4.4 Results and Analysis of Experiments on Sequential File

Structures

For each experiment, three performance measures were gathered: the CPU time, the

elapsed time, and number of read operations from secondary storage. Multiple pro-

cessorswere used in both traditional and memory mapped experiments. The retrieval

application processran on one processorwhile the accessmethod for the �le structure

ran on another processor. The measured CPU time is the total computing time spent

by all processorsin a given test run and the elapsed time is the real clock time from the

beginning to the end of a test run. Hence, CPU time for an experiment may be greater

146 Experimental Analysis of EPD File Structures

Edge

Intra-cluster

Inter-cluster

Clusters

Edge

Figure 4.4: Network Graph Structure

than elapsedtime. Both times include any system overhead.

4.4.1 Stand-alone System: No External Interference

The results of running the experiments on a stand-alone system are presented in table

4.1. For the CPU times, the memory mapped accessmethods are generally better than

the traditional onesbecausethere is lessCPU time spent doing buffer management. For

the elapsedtimes, the memory mapped accessmethods are comparable (
�

10%)to their

traditional counterparts. An exception occurs when the traditional LRU buffer spaceis

only 5% of the �le size for sequential reads becausethe LRU algorithm is suboptimal

in this caseand results in some extra input operations. The memory mapped FIFO

page replacement algorithm is almost optimal in this caseand can work with smaller

amounts of primary memory without degrading performance. All of the results show

that the DYNIX page replacement schemeperformed well enough to be comparable to

4.4Results and Analysis of Experiments on Sequential File Structures 147

the traditional LRU buffer-manager.

Theseresults con�rm the thesis about memory mapped �le structures,i.e., the EPD

approach to memory mapping provides performance comparable to that obtained with

traditional �le structuresfor random queries.

4.4.2 Loaded System: External Interference

To verify the conjecture about the expected behaviour of mapped accessmethods on a

loaded machine, the previous B
�

-Treeexperiments wererepeatedduring peak-load peri-

ods. Thememory mapped and traditional retrievals werestarted at the sametime during

peak load (3:00pm)and, hence,werecompeting with eachother aswell asall other users

on the system. The two �le structureswere on dif ferent disks accessedthrough dif ferent

controllers so the retrievals werenot interacting at the hardwar e I/O level. However, the

amount of global cachewas not restricted, so if freememory was available, the memory

mapped accessmethod would bene�t from it. Table 4.2shows the averagesof trials on

5 dif ferent week-days.

Note that for the EPD �le structures, the amount of localmemory allocated to the

experiment was 10%of the databasesize, i.e., the maximum resident setof the program

was restricted to be 10%of databasesize plus an allowance for program code and data.

However, the program's data can be cachedby the operating system in any globalmem-

ory that is not being used by other competing programs running on the system. As can

be seen,there was a large dif ferencewhen there were a signi�cant number of random

reads. In those cases,the memory mapped accessmethods make use of any extra free

memory to buffer data. This effect is particularly noticeable for the normal distribu-

tion becauseany extra memory produces a signi�cant impr ovement. Clearly, the LRU

buffer manager could be extended to dynamically increaseand decreasebuffer space

depending on system load, but doing so is non-trivial and further complicates the buffer

148 Experimental Analysis of EPD File Structures

Memory Mapped Traditional

Block Size= 8K CPU Elapsed Major CPU Elapsed Disk

Access Query Time Time Page Time Time Reads

Method Distribution (secs) (secs) Faults (secs) (secs)

Pre�x <1,10000> 35 19 61 32 32 53

B
�

-Tree <10,1000> 35 19 56 32 32 58

<100,100> 37 22 147 35 35 150

<10000,1> 98 217 8789 240 223 8746

normal 91 181 6777 202 183 6638

R-Tree window 154 174 1414 330 334 1462

point 109 124 934 230 234 896

Network 85%local ref 318 476 15294 526 458 15004

Graph 90%local ref 271 375 11278 449 370 11368

95%local ref 207 243 6584 337 254 6539

(a) Primary Memory Size10%of DatabaseSize

Memory Mapped Traditional

Block Size= 8K CPU Elapsed Major CPU Elapsed Disk

Access Query Time Time Page Time Time Reads

Method Distribution (secs) (secs) Faults (secs) (secs)

Pre�x <1,10000> 35 19 61 35 35 117

B
�

-Tree <10,1000> 35 19 66 34 33 131

<100,100> 37 22 155 37 36 216

<10000,1> 127 255 9415 260 224 9723

normal 126 235 8250 253 217 9313

R-Tree window 181 227 2913 367 374 3396

point 136 184 2647 279 289 3491

Network 85%local ref 383 565 17772 563 495 16550

Graph 90%local ref 330 462 13602 484 403 12781

95%local ref 264 316 8338 361 276 7400

(b) Primary Memory Size5% of DatabaseSize

Table 4.1:Comparison of Memory Mapped and Traditional AccessMethods

4.5Partitioned B
�

-Tree 149

Allocated Primary Memory Size10%of DatabaseSize
Memory Mapped Traditional

Block Size= 8K CPU Elapsed Major CPU Elapsed Disk

Access Query Time Time Page Time Time Reads

Method Distribution (secs) (secs) Faults (secs) (secs)

Pre�x <1,10000> 35 21 60 34 35 53

B
�

-Tree <10,1000> 36 21 56 34 36 58

<100,100> 37 25 143 37 38 150

<10000,1> 111 277 6677 263 263 8746

normal 97 134 2063 221 217 6638

Table 4.2:PeakLoad Retrievals

manager while duplicating facilities provided by the operating system.

4.5 Partitioned B
�

-Tree

A B
�

-Treebasedon the EPDapproachwas modi�ed to becomeapartitioned B
�

-Treeand

evaluated. This section presentsthe modi�cations made to the B
�

-Treeand the results

of the experiments run using the methods presentedin section 3.3.

4.5.1 Partitioning Algorithms

Two dif ferent partitioning algorithms, viz., a near-optimal algorithm by Seegerand Lar-

son [SL91] and a simple round-r obin algorithm, werestudied. Given D disks, the Seeger-

Larson algorithm guarantees that each leaf node in any sub-sequenceof leaves of size

D � 2 or smaller is stored on a distinct disk. In the round-r obin partitioning algorithm

with D disks, numbered 0 through D � 1, when a node splits, the new node is allocated

on disk
�

M
�

1 � modD, where M is the disk containing the splitting node. The round

robin algorithm distributes new nodes cyclicly over the D disks, and its performance

was compared to the Seeger-Larson algorithm.

150 Experimental Analysis of EPD File Structures

4.5.2 Modi�ed File Structure

The pre�x B
�

-Tree(seesection 4.3.1)was modi�ed to achieve:

ef�cient partitioning of data: The B
�

-Treeis partitioned acrossseveraldisks during the

insert operation; when a node splits, the new node is allocated on a disk dif ferent

from the one containing the splitting node. The disk for the new node is deter-

mined by the partitioning algorithm being used.

ef�cient parallel execution of range queries: A parallel retrieval algorithm was de-

signed and implemented for this purpose. The algorithm splits the speci�ed range

query into multiple smaller sub-queries that accessdata on dif ferent disks and are

executed in parallel.

To achieve the �rst of the above goals, the structure of the B
�

-Treenodes is modi�ed

to store the cardinal number of the containing disk with eachindex entry and leaf node.

This modi�cation allows the traversal algorithm to determine the containing disk for a

node referred to by an index entry without having to rely on a special format for the

node pointers.

Partitioning a <K,K> range query involves searching the index for the two keys to

determine the leaf nodes for the keys and then partitioning the set of leaf nodes by

following the leaf node links. In order to allow the <K,C> and <K,C,C> range queries

to be processedequally ef�ciently , the B
�

-Tree node structure is further modi�ed as

follows. The total number of records stored in the sub-tree of an index entry is stored

with the index entry asdepicted in �gur e 4.5.

This structure allows a <K,C> style query to be changed into a <K,K> style query by

using the record counts in index entries to locate the bounds of the <K,C> style range

query. For example, execution of a <K,C> query �rst searchesthe index for key K and

4.5Partitioned B
�

-Tree 151

A, B, C, D, E F, G, H, I, J K, L, M, N O, P, Q, R S,T, U, V, W X, Y, Z

D0 D1 D2 D3 D1 D0

Leaf Nodes

D0 D1

D0 D1 D3 D1D2 D1

14 12

5 5 4 4 5 3

N

E R WJ

Figure 4.5: Modi�ed B
�

-TreeFile Structure

then traverses right (assuming C has a positive sign) from K, summing record counts

from index entries until C is equaled or exceededat key Kb; the query <K,Kb> bounds the

leaf nodesthat must beretrieved to service the <K,C> query. Note that the aboveprocess

traversesdown the treeonly up to the last index node level and doesnot dereferencethe

leaf node pointers. With record counts stored in index nodes, the cost for searching

the index structure to locate the bounds of a <K,C> style query is very low becausethe

index pages for low to moderately sized B
�

-Treesare usually cached in memory and

thus require no disk accesses.

The costpaid for the abovemodi�cations to the B
�

-Treeis reduced fan-out causedby

the reduction in number of index entries per node becauseof the increasedsize of each

entry. However, this overhead becomessigni�cant only when the averagelength of the

keys stored in the index nodes is relatively small.

152 Experimental Analysis of EPD File Structures

4.5.3 Concurrent Retrieval Algorithm

For retrievals, a specialized form of the generic concurrent retrieval algorithm described

in section3.3.4is used. During execution of a query on the B
�

-Tree,very little processing

takesplace in the index nodes. Therefore,a single task is employed to traverse the index

portion of the B
�

-Tree.

4.5.4 Experimental Analysis

Recall, the machine used for experiments was a SequentSymmetry with 10 processors

and 8 disk drives, of which 4 were used (see section 4.1). In each experiment, 1000

<K,C> range queries were processed,where eachindividual query consisted of reading

a random number of sequential records starting at a randomly selectedkey. The average

query size was 2000records. A control experiment was performed �rst, in which the

B
�

-Treehad only a single partition. The code executed is the sameas in the partitioned

casebut there is no parallelism at the back end from the single partition. The partitioned

B
�

-Treeexperiments were conducted with 4 partitions and the application program did

no processingon query results. Thus, the application program did not intr oduce any

delays.

As before, the performance parameters measured in each experiment included the

elapsed time, the total CPU time over all processesand the total number of major page

faults (seesection4.1.3).Theseparametersprovide real time evaluation of the concurrent

retrieval algorithm, and the partitioning algorithm. The results obtained for the parti-

tioned B
�

-Treeare presentedin table 4.3and �gur e 4.6. The largest decreasein elapsed

time is from 1 to 2 processorsbecausethere are 2 channels allowing 2 disks to transfer

data without contention. After that, the decreaseis lessbecauseof the data transfer con-

tention on the channels,until the elapsed time begins to rise becauseof this contention.

4.5Partitioned B
�

-Tree 153

Nevertheless, a speedup of 3.2 with 4 disks is quite noteworthy . Note that the graphs

for the single disk casehave only two data points. With only a single disk to work with,

there is no bene�t derived by having multiple CPUs to do the I/O becauseall I/O re-

questsare serialized at the disk and a kernel thread blocks until a page fault is serviced.

As a result, there is no saving in elapsetime. In fact, the time increasesslightly as the

number of CPUs is increasedbecauseof the extra contention intr oduced by multiple

CPUsaccessingthe single disk.

Primary Memory Size10%of DatabaseSize

250

300

350

400

450

1 2 3 4

Elapse
Time
(sec)

Number of CPUs

�

�

�

�

�

�

�

�

�

�

250

300

350

400

450

500

1 2 3 4

CPU
Time
(sec)

Number of CPUs

Single Disk
�

�

�

Round Robin
�

�

�

�

�

Seeger-Larson �

�

�

�

�

Figure 4.6: Comparison of Single Disk B
�

-Treewith Four Disk B
�

-Tree

During execution of the program, statistical information is collected in the LRA to

measure the effectivenessof the two partitioning algorithms for the query setbeing stud-

ied. First, the total number of retrieval requests,indicating total I/O to bedone, received

by the LRA is maintained. Second,the distribution of theserequestsover various disks is

154 Experimental Analysis of EPD File Structures

Primary Memory Size10%of the DatabaseSize

Round Robin Seeger-Larson

Partitioning Partitioning

Total Num Total Num

Num Number CPU Elapsed Page CPU Elapsed Page

Disks CPUs Time Time Faults Time Time Faults

1 1 254 427 13458 254 427 13458

2 324 440 13313 324 440 13313

4 1 259 438 13655 256 424 13623

2 297 296 13545 290 263 13639

3 454 262 13754 372 252 13646

4 491 325 13650 454 262 13754

Table 4.3: Comparison of Single Disk B
�

-Treewith Four Disk B
�

-Trees

measured. An even distribution acrossall disks indicates that the partitioning algorithm

achieved good overall load balanceand good throughput. However, global load balance

in itself is not suf�cient to achievegood local load balanceand responsetime for individ-

ual queries. For example, if eachquery retrieves data from a single disk, but individual

queries are spread evenly over all disks, the statistical information will indicate an even

overall distribution of disk retrievals. However, there would be no impr ovement in the

responsetime of any one query and neither is there any impr ovement in throughput.

What is needed, therefore, is another criterion to measure the effective performance

gain that takes into account the gain achieved by individual queries. For this purpose,

a new parameter, called the performancegain, is de�ned to serve as a theoretical mea-

sure of the gain achieved by partitioning the �le structure acrossmultiple disks. Let Q0,

Q1, ..., QN � 1 be the list of queries executed on a B
�

-Treepartitioned acrossD disks. For

the i-th query, let di j
�

0
�

j � D � 1� be the number of leaf nodes retrieved from disk

j. D j � å N � 1
i � 0 di j is the total number of leaf nodes retrieved from disk j to processall N

queries and Total � å D � 1
j � 0 D j is the total number of leavesretrieved from all disks. Now,

4.5Partitioned B
�

-Tree 155

for the i-th query, Totali � å D � 1
j � 0 di j is the total number of disk reads,and Maxi � maxD

� 1
j � 0 di j

is the minimumnumber of serialized disk readsrequired for executing the query; in other

wor ds, the disk with the largest number of I/O operations is the bottleneck and dictates

the shortest possible time to processthe query. Hence, Totali � Maxi indicates the maxi-

mum speedup possible by executing the i-th query in parallel. If an individual query

accesseddata equally from all disks, this number for the query is equal to D indicating a

D fold speedup in the parallel execution of the query.

The performance gain over all queries is computed asTotal � å N � 1
i � 0 Maxi and provides

a theoretical measure of the effectivenessof the partitioning algorithm alone. The per-

formance gain, ascomputed for the round robin and the Seeger-Larson partitioning al-

gorithms, is shown in Table 4.4. As can be seen,the Seeger-Larson algorithm performs

much better than the round robin algorithm. However, in practice, the round robin al-

gorithm performs reasonablywell given its simplicity . Further, a sequential reading of

the entire B
�

-Tree indicated that the Seeger-Larson algorithm partitioned the B
�

-Tree

almost perfectly with a performance gain of approximately 3.95 with four disks. The

corresponding performance gain for the round robin algorithm was slightly lower at 3.6.

Effect of Employing Extra Segments for Retrieving Data

In the experiments described so far, all the retriever tasks operated on a single mapping

createdby the representative(seeFigure 4.7(a))with its own page table and resident set.

This arrangement can lead to someinterferenceamong the accesspatterns of individual

retriever tasksbecauseall the retriever tasksshare the sameresident set in primary stor-

age. Thus, a page fault generated by one retriever task can potentially remove a page

that might be needed immediately by another retriever task. For the B
�

-Tree experi-

ments, however, the effect is not likely to be large becauseof the uniform distribution of

requests. To test this conjecture, another set of experiments was run, where additional

156 Experimental Analysis of EPD File Structures

Num Leaf Disk Counts Perf.

Disks Count D0 D1 D2 D3 Max Gain

1 15189 15189 - - - 15189 1.000

4 15189 4065 4057 3534 3533 6144 2.472

(a) Round Robin Partitioning

Num Leaf Disk Counts Perf.

Disks Count D0 D1 D2 D3 Max Gain

1 15189 15189 - - - 15189 1.000

4 15189 3728 3824 3835 3802 4883 3.111

(b) Seeger-Larson Partitioning

Table 4.4: ExpectedEffectivenessof B
�

-TreePartitioning Algorithms

segmentswere created for the exclusive use of the retriever tasks, while the represen-

tative retained its own original segment (seeFigure 4.7(b)). The retriever tasks were

distributed evenly across the additional segments; the number of additional segments

is a control variable. The additional segment created for a retriever task mapped the

corresponding partition, of the representative segment, in its own addressspace,with

its own page table and resident set.

The results of the experiments with extra retriever or worker segmentsare presented

in Table 4.52. With no worker segments,all the tasks executeon the representativeseg-

ment, and therefore, any available CPU can execute any ready task. However, when

worker segmentsare created,eachwith one CPU, the tasks are partitioned into disjoint

subsetswith each subset executing on a dif ferent segment; the retriever tasks are dis-

tributed uniformly acrossthe available worker segmentsand all remaining taskssuch as

2The last 4 rows from table 4.3have beenreproduced for easyreference.

4.5Partitioned B
�

-Tree 157

Segment
Representative

Page
Table

(a) A single mapping

table
page

table
page

table
page

table
page

Segment
Representative

Page
Table

Retriever
Segment

Retriever

Retriever

Retriever

Segment

Segment

Segment

(b) Extra mappings for Retrievers

Figure 4.7: Using Multiple Segmentsfor Retriever Tasks(FSTs)

the LRA, the FSTs and the iterator stay on the representativesegment.

Unfortunately , this partitioning of tasks is detrimental to parallelism afforded by

multiple CPUs. When there is only one worker segment (rows 5 and 6 of table 4.5),all

the retriever tasks use one CPU and the remaining tasks are executedby the CPU(s) on

the representativesegment. As a consequence,the representativesegment CPUs spend

signi�cant amounts of time waiting for the worker segment CPU to retrieve data from

disks via one of the retriever tasks. During this wait, a representative segment CPU

either spins or goesto sleepdepending upon the spin time con�guration 3 and the actual

3Setting the spin time appropriately involves a trade-off between CPU and elapsed times. If the spin
time is too small, the CPU may go to sleep too frequently resulting in lower CPU times but higher elapsed
times causedby the cost involved in waking a CPU up. On the other hand, an excessively large value of
spin time can result in wasted CPU cycles. For the experiment presentedin this dissertation, the spin time

158 Experimental Analysis of EPD File Structures

waiting time.

Primary Memory Size10%of DatabaseSize
Round Robin Seeger-Larson

Number of Disks = 4 Partitioning Partitioning

Number CPUs on Total Num Total Num

Worker Rep Total CPU Elapsed Page CPU Elapsed Page

Segments Segment CPUs Time Time Faults Time Time Faults

0 1 1 259 438 13655 256 424 13623

2 2 297 296 13545 290 263 13639

3 3 454 262 13754 372 252 13646

4 4 491 325 13650 454 262 13754

1 1 2 533 430 13720 533 362 13711

2 3 743 506 14030 755 433 14090

2 1 3 338 361 13152 337 301 13131

4 1 5 304 426 13118 303 416 13137

Table 4.5: Effect of Extra Worker Segmentson Concurrent B
�

-TreeRetrievals

As can be seenfrom table 4.5, using a single worker segment with one CPU on the

representative segment (rows 5-6) generatesapproximately the same number of page

faults as using no worker segments (rows 1-4) becauseall the retriever tasks are still

sharing the same segment. It is not clear why a slight increasein the number of page

faults occurs with two CPUs on the representative segment when a single worker seg-

ment is employed (row 6). At the sametime, the use of a single worker segment (rows

5-6) substantially increasesthe total amount of CPU time becauseof the spinning of the

CPU(s) mentioned before. As well, the elapsed time (rows 5-6) increasesbecauseof the

loss of data parallelism caused by reducing the number of CPUs available for the re-

triever tasks. When the number of worker segmentsis increasedto 2 (row 7), there are

was set to 1 ms, which is the costof waking up a UNIX processon the testbed used.

4.5Partitioned B
�

-Tree 159

indeed fewer page faults generated, thus con�rming the hypothesis about the interfer -

ence among dif ferent retriever tasks. The total CPU time is reduced becausenow the

representativesegmentCPU communicates in parallel with two worker segmentCPUs,

and therefore, spends signi�cantly less time spinning. The elapsed time (row 7) also

comesdown becauseof the two fold data parallelism made possible by the two worker

segment CPUs to executethe retriever tasks. Finally, when the number of worker seg-

ments is further increased to 4 (row 8), data parallelism increasesso that retrieval re-

questsgeneratedby the taskson the representativesegmentare processedfaster; hence,

the representative segment CPU(s) have higher utilization, which means lessspinning,

and hence,a lower CPU time. The elapsedtime doesnot reduceany further becausethe

amount of data parallelism is restricted by the number of available disk controllers.

Thus, the reduction in the number of page faults afforded by the extra worker seg-

ments is not substantial and does not offset the overhead intr oduced by the additional

segments, as is evident from comparing the elapsed times in table 4.5 when the total

number of CPUs employed is taken into account. For example, faster elapsed time is

achieved by employing three CPUs on the representative segment instead of splitting

the CPUs across one representative and two worker segments in spite of the slightly

reduced number of page faults causedby the extra worker segmentsin the latter case.

These results seem to disfavour the use of additional segments for retriever tasks.

Hardwar e systems with more advanced virtual memory capabilities might make this

approach viable in the futur e. What is noteworthy is that � Database allows for all these

dif ferent options to take advantage of available hardwar e.

160 Experimental Analysis of EPD File Structures

4.6 Partitioned R-Tree

The R-Tree�le structure (seesection 4.3.2)was modi�ed and partitioned to achievepar-

allel execution of queries. Note that point queries as well as window queries on an

R-Treeare range queries capableof bene�ting from parallel execution. Devising ef�cient

partitioning algorithms for the R-Treeis much morecomplicated than for the B
�

-Treebe-

causethere is a signi�cant amount of computation that takesplace in the index nodes of

an R-Treeduring traversal. Thenatureof computation dependsupon the query being ex-

ecuted and in�uences how the treeshould be partitioned to achievegood performance.

4.6.1 Partitioning Algorithms

For partitioning an R-Tree across multiple disks in the EPD environment and for ex-

ecuting queries (point, enclosure, intersection, containment) in parallel, a round-r obin

partitioning algorithm was used. For the purposes of this study, data rectangles,asop-

posed to pointers to data rectangles,are stored in leaf nodesof the R-Tree.This structure

trivially ensuresthat the data portion of the R-Treeis spread over various disks without

requiring any special attention and does not affect the outcome or the validity of the

experiments.

As in the caseof the B
�

-Tree, the round robin partitioning algorithm is used for

striping the R-Tree: when a node needs to be split, the next round robin disk is chosen

for storing the new node. On average,the round robin algorithm is expectedto provide

reasonableperformance and hasminimal computational cost during partitioning.

4.6.2 Modi�ed File Structure

The only modi�cation made to Guttman's Linear R-Tree [Gut84] is the addition of an

extra �eld to the next node pointer in eachindex entry. The extra �eld consistsof the disk

4.6Partitioned R-Tree 161

number containing the referent node and allows the LRA (seesection3.3.4)to determine,

by analyzing an index entry, the disk on which a leaf node is stored. The resulting

reduction in fan out of the R-Treeis not signi�cant, becausethe extra spacetaken by the

new �eld is small compared to the total size of an entry containing a multi-dimensional

rectangle.

4.6.3 Concurrent Retrieval Algorithm

For retrievals, a specialized form of the generic concurrent retrieval algorithm described

in section 3.3.4is used. During execution of a query on the R-Tree,processingof index

nodes is very computation intensive. Therefore, instead of using a single task to traverse

the index portion of the R-Tree,provision is made to employ multiple �le structure tra-

verser (FST)tasks (see�gur e 3.6). The effect, on performance, of varying the number of

thesetasks is studied in the experiments conducted on the partitioned R-Tree.

4.6.4 Experimental Analysis

The round robin partitioning algorithm was implemented and studied. The experimen-

tal structure used is analogous to that used for the B
�

-Tree partitioning experiments

described in section 4.5.4. In all the experiments described in the rest of this section,

the primary memory size is 5% of the databasesize. The results presentedin Figure 4.8

provide a measured comparison of the single-disk R-Tree with a four -disk partitioned

R-Tree.For all of theseexperiments 4 FSTtaskswere employed.

Expectedly, the partitioned R-Treesperform much better than a single-disk R-Tree.

Another point to note about the results is the fact that, unlike for the B
�

-Tree, elapsed

time goesdown for the single disk casewhen the number of CPUsis increasedfrom one

to two becauseof the CPU parallelism for processingthat takes place at the dir ectory

162 Experimental Analysis of EPD File Structures

Primary Memory Size5% of DatabaseSize
Number of File Structure Traverser Tasks= 4

200

250

300

350

400

450

500

1 2 3 4

Elapsed
Time
(sec)

Number of CPUs

Single Disk
�

�

�

Round Robin
�

�

�

�

�

(a) Window Queries - Elapsed Time

280
300
320
340
360
380
400
420
440

1 2 3 4

CPU
Time
(sec)

Number of CPUs

�

�

�

�

�

�

(b) Window Queries - CPU Time

100

120

140

160

180

200

1 2 3 4

Elapsed
Time
(sec)

Number of CPUs

�

�

�

�

�

�

(c) Point Queries - ElapsedTime

140
150
160
170
180
190
200
210
220
230

1 2 3 4

CPU
Time
(sec)

Number of CPUs

�

�

�

�

�

�

(d) Point Queries - CPU Time

Figure 4.8:Comparison of Single Disk R-Treewith Four Disk R-Trees

4.6Partitioned R-Tree 163

nodes of an R-Tree.

The performance gain parameter, asde�ned in section4.5.4,is also computed for the

R-Treepartitioning algorithm. Theseresults are presentedin Table 4.6.

Primary Memory Size5% of DatabaseSize

Num Leaf Disk Counts Perf.

Disks Count D0 D1 D2 D3 Max Gain

Window Queries

1 32359 32359 - - - 32359 1.000

4 32359 7752 8291 7678 8638 10662 3.035

Point Queries

1 11491 11491 - - - 11491 1.000

4 11491 2513 2986 2556 3436 4741 2.424

Table 4.6: Theoretical Effectivenessof Round-Robin R-TreePartitioning Algorithm

Further experiments were conducted to investigate the effect of employing multiple

FSTtasks. In the caseof the B
�

-Tree, there is very little computation carried out in the

index nodes during execution of a query. Therefore, a single task is able to traverse the

index without creating a bottleneck. On the other hand, an R-Treeindex search involves

a signi�cant amount of computation within eachindex node starting from the root of the

tree.This computation raisesthe possibility that using a single task to traverse the index

portion of the treemay createa bottleneck if the single task is unable to generatethe list

of leaf nodes for the LRA at a high enough speed. One solution is to divide the work

of traversing the index portion among a number of tasks. For example, two concurrent

taskscanbemade to work on odd and even entries of an index node respectively. Figure

4.9 contains the results obtained by varying the number of tasks that search the index.

In addition, tables 4.7 and 4.8 also tabulate the actual number of page faults generated

in eachcase.

164 Experimental Analysis of EPD File Structures

Primary Memory Size5% of DatabaseSize
Number of Disks = 4

200

250

300

350

400

450

1 2 3 4

Elapsed
Time
(sec)

Number of Index Search Tasks

1 CPU
�

�

�

�

2 CPUs
�

�

�

�

4 CPUs
�

�

�

�

(a) Window Queries - Round Robin

100

120

140

160

180

200

1 2 3 4

Elapsed
Time
(sec)

Number of Index Search Tasks

�

�

�

�

�

�

�

�

�

(b) Point Queries - Round Robin

Figure 4.9: Using Multiple Index Search Tasksto Perform Parallel Queries

In all cases,where more than one processor is employed, an impr ovement in the

elapsed time is obtained by using multiple index searching tasks. With only one CPU,

there is not much to be gained by increasing the number of FSTs; indeed, the extra

contention can even deteriorate performance slightly . With multiple CPUs, the results

clearly establish that using multiple FSTs is bene�cial. The most bene�t is derived by

increasing the number of FSTs from one to two, which causesan increasein the speed

at which leaf node referencesare presentedto the LRA for processing.A more detailed

explanation of theseresults is provided later in this section.

As canbeseenfrom tables4.7and 4.8,the number of pagefaults is not affected by an

increasein the number of FSTs in most casesbecausethe amount of I/O to bedone is still

the same.However, an apparent anomaly occurs for somecases(e.g.,for the single disk

4.6Partitioned R-Tree 165

Primary Memory Size5% of DatabaseSize

Num Index Num

Rep Search CPU Elapsed Page

CPUs Tasks Time Time Faults

Single Disk

1 1 282 446 14275

2 291 470 13611

4 295 473 12919

2 1 394 453 15073

2 375 428 13934

4 383 435 13597

4 Disks Round Robin

Partitioning

1 1 283 439 13464

2 285 438 12737

4 290 440 12403

2 1 339 313 13520

2 314 269 13045

4 320 257 12815

3 1 431 295 13547

2 379 239 13538

4 368 217 13825

4 1 570 314 14261

2 489 247 14206

4 445 211 14292

Table 4.7:Using Multiple Index Search Tasksfor Parallel Window Queries

casein table 4.7)whereby the number of page faults decreasesslightly as the number of

FSTs is increasedfrom one. The causeof this anomaly needsto be investigated further .

Experiments were also conducted to study the effect of interferenceamong retrieval

tasksworking on the samesegment. Theseresultsare presentedin tables4.9and 4.10.In

order to analyze the results presentedin tables 4.7 through 4.10,the algorithm of �gur e

166 Experimental Analysis of EPD File Structures

Primary Memory Size5% of DatabaseSize

Num Index Num

Rep Search CPU Elapsed Page

CPUs Tasks Time Time Faults

Single Disk

1 1 143 178 3318

2 145 186 3259

4 147 191 3309

2 1 187 174 3822

2 173 149 3522

4 178 152 3467

4 Disks Round Robin

Partitioning

1 1 143 179 3252

2 143 189 3273

4 147 186 3278

2 1 173 142 3410

2 158 119 3345

4 162 112 3426

3 1 221 143 3621

2 190 112 3623

4 186 99 3651

4 1 284 149 3967

2 240 110 3920

4 222 98 3982

Table 4.8:Using Multiple Index Search Tasksfor Parallel Point Queries

3.6is reduced to a queueing system asshown in �gur e 4.10.

The LRA acceptsleaf node referencesfrom the FST(s)and queues them up for the

retriever tasks. The retriever tasksdereferencethe pointers and queue the resulting data

for the iterator task to fetch on demand. The interface between the LRA and the FSTscan

be considered a producer-consumer interface with a bounded buffer of size M, where M

4.6Partitioned R-Tree 167

Primary Memory Size5% of DatabaseSize
Round Robin

Number of Disks = 4 Partitioning

Num Num Index Num

Worker Rep Search CPU Elapsed Page

Segments CPUs Tasks Time Time Faults

1 1 1 361 441 15562

2 379 462 15485

4 383 473 15526

2 1 481 454 15809

2 452 435 15841

4 455 441 15756

2 1 1 377 340 14315

2 394 338 14203

4 406 344 14374

2 1 498 349 14730

2 462 306 14729

4 473 305 14719

4 1 1 414 307 14962

2 438 290 15004

4 444 272 14978

2 1 534 314 15310

2 493 251 15344

4 514 231 15306

Table 4.9:Using Multiple RepresentativeSegmentsfor Parallel Window Queries

Retrievers LRA FST(s)

>>

abgt

Figure 4.10:Queueing Systemfor the Generic Concurrent Retrieval Algorithm

168 Experimental Analysis of EPD File Structures

Primary Memory Size5% of DatabaseSize
Round Robin

Number of Disks = 4 Partitioning

Num Num Index Num

Worker Rep Search CPU Elapsed Page

Segments CPUs Tasks Time Time Faults

1 1 1 171 177 4585

2 179 191 4601

4 184 196 4573

2 1 226 184 4783

2 207 168 4776

4 211 170 4773

2 1 1 181 152 4029

2 194 161 4107

4 194 165 4074

2 1 235 156 4188

2 214 134 4245

4 220 134 4187

4 1 1 189 145 4042

2 204 151 3054

4 209 151 3068

2 1 249 153 4285

2 226 123 4236

4 235 120 4338

Table 4.10:Using Multiple RepresentativeSegmentsfor Parallel Point Queries

is the number of FSTs, i.e., eachFSTacts like a node in a buffer after it has computed a

requestbut blocks becausethe LRA is busy. The rate, a at which items are placed in the

buffer for the LRA is a linear function of M, i.e.,doubling the number of FSTsdoubles the

rate of arrival at the buffer. A similar producer-consumer relationship existsbetween the

LRA and the retriever tasks, and between the retriever tasks and the iterator task. The

number of effective consumersfor the data generatedby the LRA is the number of CPUs

4.6Partitioned R-Tree 169

(or the number of worker segments)executing the retriever irr espective of the number

of retriever tasks becausea retriever task is blocked on I/O most of the time, which

correspondingly blocks the CPU it is executing on. This situation is analogous to having

a single consumer whose rate of consumption, t , is a linear function of the number of

worker segments, N. Finally, the LRA, all the FST tasks and the iterator share the P

CPU(s) available on the representativesegment.

An informal analysis of the queueing system in �gur e 4.10 is employed to explain

the results. There are threecontrol variables, M, N and P. The effect of changing eachof

thesevariables is discussednext.

Effect of changing N, the number of worker segments: Increasing N makes more

CPUs available for performing parallel I/O from the disks resulting in reduced

elapsed time. The reduction in elapsed time diminishes as the number of seg-

ments approachesthe number of available disk controllers. Also, in order for the

parallelism to be fully exploited, the rate of production, g, for the LRA must be

high enough to ensure that the queue for the retriever tasks is kept non-empty,

which in turn implies that a must be high enough to ensure that the LRA's input

queue is non-empty. Thus, in order for the algorithm to bene�t optimally from an

increasein N, the representative segment must have matching resources. Finally,

if the matching is not perfect, an increasein total CPU time is expected from the

increasein the number of CPUsemployed due to spinning.

Effect of changing P, the number of CPUs on the representative segment: The goal of

increasing resourceson the representative segment is to increaseg, which can be

exploited by the retriever tasks assuming they are not blocked on I/O. Since the

LRA does not do much work, gcan only be increasedby ensuring that the LRA's

input queue is non-empty, i.e., by increasinga. With one FST, increasing the num-

170 Experimental Analysis of EPD File Structures

ber of CPUsdoesnot provide any bene�ts becausethe FSTblocks after generating

a request if the LRA is busy becausethere is no actual buffer between them, i.e.,

the FSTmakes synchronous calls to the LRA to deliver a request. In fact, perfor -

mance may deteriorate a little due to the extra scheduling contention of multiple

CPUs trying to executea single task. With multiple FSTs, increasing the number

of CPUshelps becausethe FSTs can exploit the extra processingpower to increase

a, soa reduction in elapsedtime is expected. In all cases,increasingthe number of

CPUs on the representativesegmentshould result in increasedCPU times caused

by spinning.

Effect of changing M, the number of FSTs: For elapsed time, there are two distinct

phenomena that need consideration. As stated earlier, increasing the number of

FSTsincreasesa, which should result in reducedelapsedtime aslong asthe LRA is

not blocked waiting for retriever tasks. On the other hand, the extra FSTs increase

the average length of the ready queue for the representative segment cluster, and

therefore, the iterator task runs a little slower becauseit has to contend with an

increasednumber of tasks for the available CPUs. A slowing down of the iterator

task has the effect of increasingelapsedtime. In order for the overall elapsedtime

for the algorithm to decrease,the increasedelapsed time of the iterator task must

be offset by a reduction in elapsedtime causedby an increasedg.

With one worker segment, there is a bottleneck at the disks (i.e., no data par-

allelism), and as such, no gain can be made by increasing g. Consequently, the

increasedelapsed time due to the iterator is not offset and there is an overall in-

creasein elapsed time. With multiple worker segments, an increasein g causes

an impr ovement until the retriever CPUsonceagain becomethe bottleneck. Thus,

when M is increasedthe elapsedtime reducesinitially , levels off when the retriever

4.7Summary 171

tasks becomethe bottleneck, and eventually increasesdue to a slowing of the iter-

ator task (as mentioned above). The leveling off point depends upon the number

of worker segments– with more worker segmentsthe bottleneck is achieved at a

higher number of FSTs.

For CPU time, thereare two distinct components: time during which computa-

tion is done and time when the CPU(s)spin waiting for work beforegoing to sleep.

Becausethere is a �xed amount of work to be performed by the FST(s),when M

is increased,the total amount of computation actually increasesslightly because

of the overhead of the extra task(s). However, the spinning time is affected by the

total elapsed time – in general, an increasein elapsed time (such as the ones de-

scribed above) results in an increasein the CPU time becauseof the extra spinning

in between computation. Thus, with an increasein M, CPU time follows the same

pattern as elapsed time. An exception occurs when M becomesmore than P and

there is an extra increasein CPU time that I am unable to explain.

As with the B
�

-Tree, it was found that the effect on page faults of using the worker

segmentsis only marginal and doesnot impr ove performance to any signi�cant degree.

The reduction in page faults is not signi�cant enough to offset the extra overhead of

using additional segmentsasevidenced by the large increasein CPU and elapsedtimes.

4.7 Summary

This chapter demonstrated the feasibility and viability of the EPD approach to memory

mapping by comparing EPD �le structureswith their traditional counterparts. The ex-

periments were conducted on a custom designed testbed and clearly showed that, for a

variety of accesspatterns, the EPD environment provides performance that is compara-

ble to that of a traditional LRU buffer manager. Subsequentchapters will show that the

172 Experimental Analysis of EPD File Structures

EPD approach requires special page replacement support to be competitive in certain

situations, but in most casesthis is unnecessary. In addition, it was demonstrated that

the EPD approachworks particularly well when EPD �le structurescompete with other

applications at execution time becauseall memory management is supervised by the

operating system. This chapter further investigated the issue of parallelism in an EPD

system by conducting experiments with parallel accessmethods.

Chapter 5

Application and Validation of the Analytical

Model

This chapter presentsthe design and analysis of three new parallel join algorithms in

the EPD system. The analysis is done according to the general procedure described in

section 3.5.3and validated by conducting experiments described later in this chapter.

The validationof the model, aswith other costmodels, is an attempt to establishcon�-

dencein the accuracyof the model and is done by the following method. An algorithm is

chosenfor validation purposes and an analysis of the algorithm is performed within the

context of the analytical model of the system. The analysis of the algorithm, the values

of the parameters of the model and a description of a chosendata set is used to predict

performance behaviour of the algorithm on the speci�ed physical machine. The results

of the analysis are compared against the performance measurements obtained by run-

ning experiments with the algorithm on the speci�ed machine and with the chosendata

set. A closematch between prediction and actual behaviour establishesthe accuracyof

the model for that particular environment and the model can be used with a degreeof

con�dence for predicting the behaviour of the algorithm under varying circumstances.

Further, it needs to be emphasized that the goal of this work is to develop a new

model for the EPD system becausenone of the existing models apply, and to use the

173

174 Application and Validation of the Analytical Model

new model to study new algorithms in the EPD system by being able to predict their

performance on a physical machine. It is not the goal of this work to contrast the perfor -

manceof algorithms in the EPD to other systems.

5.1 Parallel Pointer -BasedJoin Algorithms

In order to validate the analytical model of the EPD system, parallel pointer -basedver-

sions of threejoin algorithms were designed, implemented and analyzed: nested loops,

sort-merge, and a variation of Grace [KTMo83]. “Becauseany data model supporting

sets and lists requires at least intersection, union, and dif ference operations for large

sets, I believe that [the discussion of join algorithms] is relevant to relational, extensi-

ble, and object-oriented databasesystems alike.” [Gra94] In eachcase,a complete join

of one relation, R, with another, S, is considered. The prediction from the analysis was

compared against results obtained through experiments conducted with the parallel join

algorithms.

The use of (location) pointers in an EPD environment provides a unique advantage

with respect to joins and other algorithms. To demonstrate this advantage, the tradi-

tional join algorithms were modi�ed so that the join attribute embedded in an object

stored in the R relation is a pointer to an object in the Srelation. Suchalgorithms, called

pointer -basedjoin algorithms, are ideal for an EPD environment and result in signi�cant

performance advantages; the most important being that a pointer provides the order-

ing of objects in S, which can be exploited to eliminate the usual sorting or hashing of

S in sort-merge and hash-basedjoins, respectively. Note that in the conventional join

algorithms the ordering of the two joining relations is not important, i.e., either of the

two relations can be joined with the other producing with the sameresult. This feature

is no longer available for pointer -based join algorithms, unless the S relation contains

5.1Parallel Pointer -BasedJoin Algorithms 175

back-pointers to objectsin the Rrelation.

Further, eachjoin algorithm is parallelized so that the data is partitioned acrosssev-

eral disks and the join performed in parallel on individual disks. It is assumed that S

is initially partitioned on D disks into equal-sized partitions S1 ��������� SD and that the par-

tition in which a particular object of S resides can be computed from a pointer to that

object. The time for computing this mapping is denoted by map1. In addition, R is also

assumedto bedivided into equal-sized partitions R1 ��������� RD. Excellent partitioning algo-

rithms exist for dif ferent kinds of data structures(seesections4.5and 4.6). It is assumed

that join attributes are randomly distributed in R. Finally, eachrelation is managed by a

process(Rproc and Sproc, respectively), which is aware of the structure of the relations,

and in particular , Rproc is capableof carrying out the join itself.

The following parameters are de�ned for various relations and their subsets. � X �

denotes the number of objects in X, PX is the number of pages in X, and x denotes the

size of a single object in relation X.

For the algorithms, private memory is viewed asbeing divided into D pieces,where

the i-th piece is associatedwith partition Ri. An algorithm is described as it progresses

on the i-th piece, with the understanding that work on the remaining D � 1 pieces is

progressing in an analogous fashion in parallel. Each Rproci is a lightweight task; the

number of real processorsavailable for thesetasks is a control parameter; D processors

eachfor R and Sare usually employed to achievemaximum parallelism (see�gur e 5.1).

Thepartitions of Rareconceptually divided into sub-partitions basedon the partitions of

Sto which the join attributes refer; the subsetof Ri with join attributes referring to objects

in partition Sj is called Ri � j . RSj denotes the set of all objects in R that have pointers

1Such a computation is feasible in the EPD environment where multiple �le structure partitions are
mapped into a single segment and the mapping of eachpartition consistsof a distinct range of virtual ad-
dresses.For other schemes,the join attribute could be made a composite �eld with an embedded partition
number.

176 Application and Validation of the Analytical Model

to objects in Sj , i.e., RSj �

� D
i � 1Ri � j . This substructure is illustrated in the �gur es for

subsequentalgorithms. For a given i, the Ri � j sub-partitions may have someskew in size

becauseobjects in Ri may contain more referencesto some Sj and fewer to others; the

amount of skew is de�ned asskew � maxD
j � 1

���

Ri � j
�

�

Ri
� �

D �

. Skew is important as it affects the

performance of certain algorithms.

All the parameters intr oduced in this section are tabulated in table 5.1, which also

contains two parameters, sptr and G, to be described later. Additional parameters are

de�ned for each speci�c algorithm as needed. Finally, becauseevery algorithm forms

and outputs the samejoin, the analysis doesnot count the time to perform this step, nor

does it assumethat the join results are generated in any particular order.

R segment

D

RD

Rproci RprocD

R1

MAP MAP MAP

Mi MD
contiguous

M1

Ri

Rproc1

Figure 5.1:SegmentPartitioning Structure

The analysesof join algorithms computes quantities of time that can be summed to

give the total elapsed time for Rproci . Becausethere is little or no contention during the

5.1Parallel Pointer -BasedJoin Algorithms 177

Variable Description

R� S two joining relations

R1 �

� � �

� RD partitions of RacrossD disks

S1 �

� � �

� SD partitions of SacrossD disks

Rproc processto manageR

Sproc processto manageS

Rproci light-weight task to manageRi

Sproci light-weight task to manageSi

Ri � j subsetof Ri with join attributes pointing to Sj

RSj subsetof Rwith join attributes pointing to Sj

Parameter Description

map time to map a join attribute to the referent Spartition

� X � number of objectsin relation X

PX number of pagesin relation X

x size of a single object in relation X

skew skew in relative sizesof Ri sub-partitions

sptr the size of a pointer to an S-object

G size of the shared buffer used for transferring data out of S

Table 5.1: Variables and ParametersUsed for all Joins

D-fold parallelism 2, the total elapsedtime for Rproci also representsthe total time for the

entire join. To account for the effect of skew, the maximum of the elapsed time for the

various Rproci is taken to be the time for the join.

While it is convenient to speakof data being read or written in the algorithms, input

and output is not explicitly requestedby any of the algorithms. When speaking of read-

ing a block of data, the implementation actually accessesa location in virtual memory

mapped to that block. If the block is not in primary memory, it is read in by means of

2The contention for Sis eliminated by the scheduled reading of objectsfrom S, asexplained later in this
chapter.

178 Application and Validation of the Analytical Model

a page fault; otherwise, no disk accesstakes place. Similarly, when speaking of writing

a �le, no explicit action, other than to write cells of virtual memory, occurs in the im-

plementation; the writing of a (dirty) block of data takes place when the corresponding

page is replacedby the operating system. Theseactions are similar to what occurs in an

explicitly managed buffer pool, where objectsare fetched from already read buffers and

written only when the buffer is written, albeit with more user control than in memory

mapping.

5.2 Parallel Pointer -BasedNested Loops

Nested loops performs a join by sequentially traversing R. For each object in R, the

algorithm accessesthe S-objectpointed to by the embedded join attribute. R is called

the outer relation and Sthe inner. The resulting random accessesto Ssigni�cantly slow

nested loops. A naive parallel version may partition Rand Sso that eachRi can perform

its join in parallel with other Rpartitions, accessingdif ferent Sj partitions simultaneously.

However, parallelism in this caseis severely inhibited by contention when several Ri

referencethe sameSj ; this contention can be reduced or eliminated by careful algorithm

design.

In the traditional nested loops algorithm, it is usually the smaller of the two relations

that is used as the inner relation so that it can be kept in the buffer pool. In the EPD

algorithm, Sis always the inner relation unlessback pointers from Sto Rare available in

Sobjects.

5.2.1 Algorithm

For each partition Ri in parallel, the algorithm operates in two passes. In pass 0 (see

�gur e 5.2), Ri is read, one object at a time, into the private memory of Rproci , which

5.2Parallel Pointer -BasedNested Loops 179

translates, in terms of actual I/O, to reading Ri in chunks of the virtual memory page

size,B.

RPi � 1

RPi � D

RP1 � D

RprocD

Rproci

Rproc1 (i,b), ...

(D,c), ...

(1,d), ...

(D,f), ...

(1,g), ...

(i,h), ...

RP1 � i

RPD � 1

RPD � i

Ri RPi Si

(i,b)

(D,c)

(1,a)

(D,f)

(1,d)

(i,e)

(1,g)

(i,h)

(D,i) i

f

c

e

a

b

h

g

d

Pass0 Pass1

R1 � 1

Ri � i

RD � D

Sproc1

Sproci

SprocD

Figure 5.2: Parallel Pointer-BasedNested Loops

In �gur e 5.2,an R-objectis representedby a tuple
�

MAP
�

sptr �

� sptr � , where sptr is the

join attribute and MAP
�

sptr � is the number of the Spartition containing the objectpointed

to by sptr. For eachobject in Ri, the Spartition is computed from the join attribute and

the object is copied (written) to a sub-partition inside of a temporary area RPi, which is

mapped onto the samedisk aspartition Ri; all the R-objectsin Ri that point to an object

in Sj are grouped together in sub-partition RPi � j . This sub-partitioning largely eliminates

disk contention in the next pass.

180 Application and Validation of the Analytical Model

Instead of putting RPi in its own segment,managed by another process,the storage

for the RPi segment is made part of the storage for Rproci . That is, Ri is located at the

lowest addressof the Rproci segment and storage for RPi is located after the storage for

Ri. Hence,both Ri and RPi are mapped to the private memory of Rproci , which eliminates

the costsof segment-to-segmenttransfer, namely copying data through shared memory.

It also eliminates the cost of creating and managing an additional processfor RPi. The

drawback of this optimization is that the maximum size of Ri is approximately half of

the maximum available addressspacesize.

As an optimization, the objectsin Ri that point to objectsin Si are immediately joined,

in pass0, by extracting the join pointer, and having Sproci read the corresponding Sob-

ject. Sproci dereferencesthe join attribute resulting in a loading of the page of Si con-

taining the referent object, if that page is not already in memory, and makes the Sobject

available for the join by putting it into shared memory. Rproci then does the join. As a

further optimization, the requestsfor objectsfrom Si are grouped into a buffer of size G

to reducecontext switches between Rproci and Sproci .

Pass1 (see�gur e 5.2) eliminates disk contention by staggering accessto Si through

a seriesof D � 1 phases,without synchronizing the phases.In phaset (t � 1 � 2 ������� D � 1),

RPi � offset
�

i � t �

is joined with Soffset
�

i � t �

, where offset
�

i � t � �

� �

i
�

t � 1 � modD �

�

1. For example,

a typical phasejoins a sub-partition RPi � j with Sj ; becauseof the offset,Sj is only accessed

by one Rproci in any one phase, assuming no skew. In the presenceof skew, there are

dif ferent numbers of objectsin eachRPi � j , sotheremay besomecontention when multiple

Rproci accessthe sameSj . Rproci loops over objectsin RPi � offset
�

i � t �

in private memory; for

eachone, it extracts the join pointer and asksSprocoffset
�

i � t �

for the corresponding Sobject.

Becausea random distribution of join attributes in R is assumedand there is exactly

one reference to each object of S, the referencesto S-objects in each Ri are uniformly

distributed, and therefore, skew is very close to 1.0. As a result, no synchronization

5.2Parallel Pointer -BasedNested Loops 181

is used after each phase of pass 1 for all the Rproci ; any contention that does occur is

insigni�cant, as was veri�ed by running experiments with synchronization after each

phase of pass 1. In the best case,there was a 0.5%decreasein I/O and total time due

to reduced contention. This saving was not considered signi�cant enough to warrant

complicating the algorithm and the analysis with synchronization.

5.2.2 Parameter Choices

MRproci should be large enough to hold, in pass0, at least one block of the input Ri and

at least one block for each RPi � j . Since Si is being read randomly , MSproci should be as

large as possible. G should be large enough to avoid many context switches between

Rproci and Sproci , but small enough so that the volume of pending requestsdoes not

force important information out of memory. In an EPD environment, the value of G

should be, but is not required to be, a multiple of the block size, B. The implementation

used a value of B for G.

5.2.3 Analysis

Given � Ri � � � R��� D and � Ri � i � �

�

� Ri ��� D �

� skew �

�

� R��� D2
�

� skew, for the largest of Ri � i , then

� RPi � is

� Ri � � � Ri � i � �

� R�

D
�

� R�

D2
� skew�

Ri is not adjusted by skew becausethere is no synchronization between phases in this

algorithm; in essence,the skew in RPi � j is compensatedfor by the additional parallelism

resulting from the lack of synchronization among the Rproci between passes0 and 1.

In pass 0, Ri is read sequentially, RPi is written (mostly) randomly , and Si is read

randomly . Figure 5.3shows the disk layout of the threepartitions.

Sinceeach partition is accessed,the band size of disk arm movement, in the worst

182 Application and Validation of the Analytical Model

Ri Si RPi

PRPiPSiPRi

Figure 5.3:Disk Layout: Parallel Pointer-BasedNested Loops

case,is the total size of all partitions:

BandSizepass0 � PRi

�

PSi

�

PRPi �

PR

D
�

PS

D
�

�

PR

D
�

PR

D2
� skew�

�

As well, becauserandom reads and writes are interspersed on the same disk, all

dtt formula are for random I/O (i.e., it does not matter that some objects are read se-

quentially). The disk transfer times for Ri and RPi, then, are PRi
� dttr

�

BandSizepass0 � and

PRPi
� dttw

�

BandSizepass0 � , respectively.

� Ri � i � S-objects are read randomly from Si , one object at a time, during the join, but

some of those objectsmay be in memory already when requested. The analysis usesa

result of Mackert and Lohman [ML89] to approximate the number of page faults, which

corresponds to disk transfers. [ML89] derives the following approximation: given a

relation of N tuples over t pages,with i distinct key values and a b-page LRU buffer, if x

key values are used to retrieve all matching tuples, then the number of page faults is

YLRU
�

N � t � i � b � x� ��� �

�

�

�

��

t �

�

1 � qx
� if x

�

n

t ���

�

1 � qn
�

�

p �

�

x � n �

� qn	 if x
 n

5.2Parallel Pointer -BasedNested Loops 183

where

n � max
�

j : j
�

i � t �

�

1 � q j
�

�

b � and q � 1 � p ��� �

�

�

�

��

�

1 � 1� t �

N
�

i if t � i

�

1 � 1� i �

N
�

t if t � i

�

Assuming the referencesto S are randomly distributed in R, the disk transfer time for

reading objectsfrom Si , in pass0, is

YLRU

�

� RSi �

� PSi
�

� RSi �

�

MSproci

B
�

� Ri � i �
�

� dttr
�

BandSizepass0 �

�

In pass1, RPi is read sequentially, and Si is readrandomly . Sinceonly the partitions Si

and RPi are used, the band size of disk arm movement, in the worst case,is the total size

of both partitions: BandSizepass1 � PSi

�

PRPi . As well, becauserandom readsand writes

are interspersed on the samedisk, all dtt formulas are again for random I/O. The disk

transfer times for RPi and Si are, therefore,

PRPi
� dttr

�

BandSizepass1 � and YLRU

�

� RSi �

� PSi
�

� RSi �

�

MSproci

B
�

� RPi � �

� dttr
�

BandSizepass1 �

�

respectively.

Furthermor e, in pass 0, each object of Ri is moved once, either to RPi or to shared

memory for the join, and appropriate objectsof Si are moved to shared memory for the

join. The transfers from Ri to RPi are simple memory transfers among areasof Rproci 's

memory becauseof the organization of Rproci 's memory (seesection 5.2.1). The corre-

sponding data transfer cost is � RPi �

� r � MTpp
�

� Ri � i �

�

�

r
�

sptr
�

s�

� MTps.

The transfers from Si require a data movement from Sproci 's private memory to

shared memory so that an object can be accessedby Rproci ; this requires two context

switches, from Rproci to Sproci and back again so that Sproci canperform the transfer. To

184 Application and Validation of the Analytical Model

optimize context switching, shared memory of size G is used (seesection 5.2.1).During

the sequential passof Ri, objectsfor Ri � i and their join attributes (i.e., the S-pointers) are

placed into this buffer until there is only room for the corresponding Si objects. While

the S-pointer is embedded in the R object, it is copied out so that Sproci does not have

to know about the internal structure of R objects. The buffer is then given to Sproci to

copy the corresponding S-objects into the remaining portion of the buffer. The objects

in the buffer can now be joined. The buffer reducesthe number of context switches to

Sproci . Also, copying the Ri object into the buffer prevents additional I/O in Ri during

the join due to referencesback to previously read objects.The alternative is to join each

individual R object when found during the sequential scan, which results in a context

switch to Sproci for eachobject.

In pass1, eachobjectof RPi is moved onceto shared memory, and the referent objects

from Si aremoved to shared memory for the join in a total time of � RPi �

�

�

r
�

sptr
�

s�

� MTps.

The buffering technique employed in pass0 is also used in pass1 to retrieve S-objects.

The context switching costsfor pass0 and 1 are

2 � CS �

�

� Ri � i �

�

G�

�

r
�

sptr
�

s�����

and 2 � CS �

�

� RPi �

�

G�

�

r
�

sptr
�

s�����

�

respectively. The cost of mapping the join attributes to their S partitions in pass 0 is

� Ri �

� map. Finally, the setup cost (seesection 3.5.2)for mapping Ri , Si and RPi is

D �

�

openMap
�

PRi �

�

openMap
�

PSi �

�

newMap
�

PRPi � �

�

The setup time is multiplied by D becausemanipulating a mapping of a partitioned �le

structure is a serial operation.

5.3Parallel Pointer -BasedSort-Merge 185

5.3 Parallel Pointer -BasedSort-Merge

In nested loops, the random accessof S slows down the join. Sort-merge changesthe

random accessof nested loops to a single sequential scanof S, resulting in a signi�cant

performance gain. While Shapiro's sort-merge [Sha86] assumesonly two passes,my

algorithm permits multiple passes,writing out full records at eachpass. Also, asnoted

earlier, the useof S-pointers asthe join attribute makessorting of Sunnecessary.

5.3.1 Algorithm

The �rst two passesof the parallel sort-merge algorithm are the same as for parallel

nested loops (seesection 5.2.1)except for one dif ference: in nested loops, Ri � i in pass 0

and RPi � j in pass1 are joined with Si , whereasin sort-merge,Ri � i and RPi � j are written out

to RSj . Fig. 5.4shows the two passesfor sort-merge.

Once the RSi partitions have been formed, the sequential sort-merge algorithm is

executedon eachpartition in parallel. Thealgorithm proceedsby �rst sorting, in parallel,

all RSi with respectto the join attributes to allow sequential processingof Si . The sorting

of RSi is done using multi-way merge sort, with the aid of a heap and with intermediate

runs stored on disk. In the �nal pass,Si is read in sequentially to perform the join.

As in nested loops, data movement is optimized by combining several partitions

in Rproci 's segment. That is, Ri is located at the lowest addressof the Rproci segment,

storage for RPi is located after that, and then all partitions for the RSi . Hence, all these

partitions are in the private memory of Rproci . The saving in data transfers through

shared memory is signi�cant and is possible becauseRPi and the RSj are temporary areas

where the data is manipulated as composite objects without the need to dereference

embedded pointers. The drawback is that the maximum sizeof Ri is approximately D
�

1

times less than the maximum addressspacesize. If this optimization posesa problem,

186 Application and Validation of the Analytical Model

RprocD

Rproci

Rproc1

(i,b)

(D,c)

(1,a)

(i,h), ...

(1,g), ...

(D,f), ...

(1,d), ...

(D,c), ...

(i,b), ...

RPi RSi

(D,f)

(1,d)

(i,e)

Ri

Pass1Pass0

i

f

c

RD � D

Ri � i

R1 � 1

RP1 � i

RP1 � D

RPD � i

RPD � 1

RPi � D

RPi � 1

(1,g)

(i,h)

(D,i)

a

d

g

b

e

h

Figure 5.4: Parallel Pointer-BasedSort-Merge

the RSj canbeseparatesegmentsand data canbecopied to them through shared memory

using a buffer.

The design and analysis of Sort-Merge intr oduce a number of additional parameters,

tabulated in table 5.2,some chosenby the programmer, and some that are speci�ed by

the implementation. The programmer must chooseIRUN, the length of a run created

from unsorted data from pass1, and NRUN, the number of runs to be merged in a given

merging pass.In pass2 of the sort-merge algorithm, IRUN R-objectsare read in from RSi

and a heap of pointers to thesememory-r esident objectsis created in memory. Heapsort

is applied to the heap of pointers and the sorted list of pointers is used to sort, in place,

the corresponding R-objects. The resulting sorted run of IRUN R-objects is eventually

5.3Parallel Pointer -BasedSort-Merge 187

written out to disk. Theseactions are repeatedto sort successiveruns until all of RSi has

beenprocessed.

Parameter Description

IRUN length of sort runs

NRUN number of sort runs

hp size of an element in a heap of pointers

compare time to compare two heap elements

swap time to exchangetwo heap elements

transfer time to move a heap element

Table 5.2:Parametersof Sort-Merge Join

On subsequent merging passes, groups of NRUN sorted runs are merged using

delete-insert operations on a heap of NRUN pointers. The heap always contains pointers

to the next unpr ocessedelement from eachsorted run; when a pointer is deleted from

the heap, the corresponding object is moved to the output run, and a pointer to the next

object from the input run that contained the moved object is inserted into the heap. The

merged run is written out to disk and becomesthe input for the next merging pass.The

processis repeateduntil all the remaining runs can be merged in a single pass.

On the last merging pass, instead of writing out the merged R-objects, the corre-

sponding objects from Si are read sequentially and the join computed. The reading of

the objects from Si is accomplished, as in nested loops, by means of a shared memory

buffer of size G.

188 Application and Validation of the Analytical Model

5.3.2 Parameter Choices

IRUN is chosento be the largest number such that an entire run, plus spacefor the heap

of pointers, �ts in available memory, i.e.,

IRUN �

�

MRproci

r
�

hp �

�

where hp is the size, in bytes, of an element in the heap of pointers.

Ideally, merging of runs requires at least one page of memory for each run; other-

wise excessivethrashing occurs becausepagesare replaced before they are completely

processed. In reality, with this minimum memory, pagesare replaced prematurely be-

causethe LRU paging schememakesthe wr ong decisionswhen replacing a pageduring

the merging passes. That is, when objects in an input page have been processed,the

page is no longer needed, but it must agebefore it is �nally removed; during the aging

process,a page that is still being used for the output runs gets paged out, resulting in

additional I/O. In the current implementation, the problem is avoided by reducing the

value of NRUN, which is chosento be MRproci �

�

3 � B � during all but the last pass(denoted

NRUNABL), and MRproci �

�

2 � B � during the last pass. In other wor ds, memory is underuti-

lized to compensatefor this anomaly sothat the program behavesmoreconsistently. The

amount of underutilization is basedon an approximation of the working set of the pro-

gram during thesepasses.The sameproblem occurs in the Gracealgorithm, discussed

later. For the Gracealgorithm, the processingis left unchanged and an analysis is done

to quantify the amount of extra I/O that occurs due to premature replacementof pages.

Thus, two alternative strategiesof attacking the problem have beeninvestigated.

5.3Parallel Pointer -BasedSort-Merge 189

5.3.3 Analysis

Given � Ri � � � R��� D and � Ri � i � �

�

� Ri ��� D �

� skew �

�

� R��� D2
�

� skew, for the largest of Ri � i , then

� RPi � is

� Ri �

� skew � � Ri � i � �

� R�

D
� skew �

� R�

D2
� skew�

Ri is adjusted by skew becausethere is synchronization between phasesin this algorithm,

therefore the worst casemust be considered for eachindividual pass.

In pass0, Ri is read sequentially, RPi is written mostly randomly , and RSi is written

sequentially. Figure 5.5 shows the disk layout, resulting in the band size of disk arm

movement, in the worst case,of

BandSizepass0 � PRi

�

PSi

�

PRSi

�

PRPi �

PR

D
�

PS

D
�

PR

D
�

�

PR

D
�

PR

D2 �

� skew

Ri Si

PSiPRi

RSi

PRSi

RPi

PRPi

Mergei

PRSi

Figure 5.5:Disk Layout: Parallel Pointer-BasedSort Merge

The disk transfer times for Ri , RSi and RPi are

PRi
� dttr

�

BandSizepass0 � , PRSi
� dttw

�

BandSizepass0 � and PRPi
� dttw

�

BandSizepass0 �

�

respectively. In pass 1, RPi is read sequentially, and RSi is written sequentially, giving

190 Application and Validation of the Analytical Model

BandSizepass1 � PRSi

�

PRPi . The disk transfer times for RSi and RPi are

PRSi
� dttw

�

BandSizepass1 � and PRPi
� dttr

�

BandSizepass1 �

�

respectively. All dtt formulas are for random I/O becauseof wide �uctuations in the

disk arm between regions read or written sequentially.

In pass0, eachobject of Ri is moved oncewithin Rproci 's segment,either to RPi or to

RSi , at a cost of � Ri �

� r � MTpp. In pass1, eachobject of RPi is moved once within Rproci 's

segment to the appropriate RSi at a cost of � RPi �

� r � MTpp. Since all of the data move-

ments are with Rproci 's segment,there are no context switch costsin passes0 and 1. The

mapping cost for pass0, which generatea Spartition from an S-pointer, is � Ri �

� map.

In pass2 (the heap-sorting pass),runs of size IRUN objectsfrom RSi are sequentially

read in and sorted in place. Sincethere is no explicit writing, the previous sorted run is

written back by the operating system asthe pagesagewith mostly random writes. This

pattern results in a disk band size that is twice the size of a sort run: 2 �

�

r � IRUN � B � . The

disk transfer times for reading RSi and writing back the sorted runs are

PRSi
� dttr

�

2 �

r � IRUN
B

� and PRSi
� dttw

�

2 �

r � IRUN
B

�

�

respectively.

As shown in table 5.2, compare is the amount of time Rproci requires to compare

two elements in a heap of pointers to R-objects, stored in memory. Similarly, swap is

the amount of time to swap two heap elements stored in memory, and transfer is the

amount of time to move an element to or from the heap. Thesetimes do not count oper-

ations necessaryto restore heap discipline after moving an element. The time required

to restore heap discipline is computed separately.

5.3Parallel Pointer -BasedSort-Merge 191

In order to heap-sort eachindividual run, an array of pointers to the IRUN R-objects

in memory is converted into a heap using Floyd's heap construction algorithm (see

[GM86, GBY91]). The heapsort method outlined in [SS93] is then used with a modi�-

cation suggestedby Munr o [Mun95] that allows the heapsort to complete, in the aver-

agecase,with approximately NlogN comparisons and transfers. The creation of the heap

takes time

1 � 77 �

� RSi �

�

�

compare
�

1
2

� swap�

�

� RSi �

� transfer

while the cost of heap-sorting the heap by repeateddeletion of minima is

� RSi �

� logIRUN �

�

compare
�

transfer �

3
�

A further costof � RSi �

� r � MTpp is required to permute the actual R-objects,in place,based

on the sorted list of pointers.

The choiceof IRUN and NRUNABL in turn determines NPASS, the number of merging

passes,and LRUN, the number of runs on the last pass.

NPASS � max

�

j : j � 1 �

�

� Ri �

IRUN �

�

NRUNABL �

j � 1
�

�

NRUN �

LRUN �

�

� Ri �

IRUN �

�

NRUNABL�

NPASS� 1
�

In the thir d and subsequent passes,groups of NRUNABL (or LRUN in the last pass)

input runs are read in, merged into one, and written out. RSi and Mergei (see�gur e 5.5)

alternate assourceand destination of theseruns. In the last pass,RSi (if NPASSis odd) or

3Notice the omission of a ceiling on the value of log computations here and in subsequent formulae,
which compensatesfor the fact that the heaps are not perfect and may have leaf nodes at two dif ferent
levels.

192 Application and Validation of the Analytical Model

Mergei (if NPASSis even) contains all the objectsthat are merged into a single run, which

is then joined with Si . The disk band size during all but the last passis

BandSizeABL � PRSi

�

PRPi

�

PMergei
�

and during the last merging/joining passis

BandSizeLast � PSi

�

PRSi

�

�

PRPi

�

PMergei �

�

� �

NPASS
�

1� mod2�

�

Thedisk transfer time, exceptfor the last pass,for reading and writing RSi and Mergei ,

NPASS � 1 times are

PRSi
� dttr

�

BandSizeABL �

�

�

NPASS � 1 �

� and PRSi
� dttw

�

BandSizeABL �

�

�

NPASS � 1 �

�

respectively. During the last pass,I/O costsfor RSi and Si are

PRSi
� dttr

�

BandSizeLast � and PSi
� dttr

�

BandSizeLast �

respectively.

During the merge,exceptfor the last pass,the delete-insert operation [GBY91, p. 214]

is used on a heap of size NRUNABL and the heap operations for eachof the
�

NPASS � 1 �

passestake time

�

�

2 � compare
�

swap�

�

�

NRUNABL
�

1�

� k �

�

NRUNABL� 2� � 2k

NRUNABL

�

2 � transfer�

�

� RSi �

where k �

�

logNRUNABL�

�

1. The size of the heap used during the last merge pass is

5.3Parallel Pointer -BasedSort-Merge 193

LRUN and the corresponding heap operations take time

�

�

2 � compare
�

swap�

�

�

LRUN
�

1 �

� k �

�

LRUN � 2� � 2k

LRUN
�

2 � transfer�

�

� RSi �

where k �

�

logLRUN �

�

1. The data transfer costduring the NPASS � 1 merge passesand

the last mergepassare � RSi �

� r � MTpp
�

�

NPASS � 1 � and � RSi �

�

�

r
�

sptr
�

s�

� MTps, respectively,

with the corresponding context switching time of

2 � CS �

�

� RSi �

�

G�

�

r
�

sptr
�

s��� �

�

Finally, the setup cost for mapping Ri, Si , RSi , RPi and Mergei is

D �

�

openMap
�

PRi �

�

openMap
�

PSi �

�

newMap
�

PRSi
�

�

newMap
�

PRPi �

�

newMap
�

PSi � �

�

The setup time is multiplied by D becausemanipulating a mapping is a serial operation.

An additional costof
�

deleteMap
�

PSi �

�

newMap
�

PSi � �

�

�

NPASS � 1 � is incurr ed in all merge

passesbut the last, to switch the sourceand destination areasfor the merge.

Figure 5.6 illustrates the progressmade by a particular run of the sort-merge join

algorithm with actual times obtained from an experiment. The �gur e provides insights

into the workings of the parallel sort-merge join algorithm becauseof its complexity.

The term staggered starts used in the �gur e indicates where multiple threads perform

a brief serial operation, e.g., initialization of shared structures,before proceeding with

their individual parallel computation.

194 Application and Validation of the Analytical Model

0
8.

08
12

2.
56

12
5.

13
56

1.
11

57
0

12
2.

56

11
8.

6

12
2.

31

11
9.

45

2.
57

21
.7

9

23
.5

1

23
.7

1

21
.5

9

10
3.

79

10
4.

61

10
4.

16

10
4.

27

1.
57

1.
55

1.
61

1.
48

30
8.

83

29
7.

24

30
0.

27

30
7.

57

8.
89

S
Y

N
C

H
.

S
Y

N
C

H
.

M
ap

/

ot
he

r

se
tu

p

P
ar

tit
io

n

(I
nc

lu
de

s
se

tti
ng

te
m

p.
�le

s)

cl
ea

n
up

/

re
st

ar
t

m
ap

te
m

p

�le
s

m
ak

e

ru
ns

M
er

ge
cl

ea
n

up

S
ta

gg
er

ed

S
ta

rt
s

T
IM

E
in

se
co

nd
s(

no
td

ra
w

n
to

sc
al

e)

re
-m

ap

R
pr

oc
3

R
pr

oc
2

R
pr

oc
1

8.
08

R
pr

oc
0

Figure 5.6:Time Line Progressof Parallel Sort-Merge

5.4Parallel Pointer -BasedGrace 195

5.4 Parallel Pointer -BasedGrace

Sort-merge impr oves the performance of the join by sorting Ri by the S-pointer, which

allows sequential reading of Si . However, sorting is an expensive operation. Hash-

basedjoin algorithms replacethe sort with hashing to impr ove performance further . As

an example of the hash-based join algorithms, I have chosen to model a parallelized

pointer -basedversion of the Gracealgorithm.

As with sort-merge, the spatial ordering property of the S-pointers makes it unnec-

essaryto hash Si . By carefully designing the hash algorithm, it can be ensured that each

hash bucket contains monotonically increasing locations in Si , so that Si can be read se-

quentially .

5.4.1 Algorithm

The �rst two passesof the Gracealgorithm, shown in �g. 5.7,are the sameas in parallel

nested loops, except for one dif ference; in nested loops, R-objects are joined with Si ,

whereasin Grace,the join attributes (i.e., the S-pointers) from R-objectsare hashed into

one of K sub-partitions (or buckets) that make up RSi . The value of K is chosenby the

programmer basedon the amount of memory available. The jth sub-partition of RSi is

referred to asBSi � j , i.e.,RSi �

� K
j � 1BSi � j . Figure 5.7shows thesetwo passesof the modi�ed

Gracealgorithm and table 5.3contains additional parameters for the algorithm.

Parameter description

TSIZE range of the hash function in pass1

K number of hash buckets formed

fuzz hash table overhead factor

Table 5.3: Parametersfor GraceJoin

196 Application and Validation of the Analytical Model

BSi � k

BSi � x

BSi � 1

BSD � k

BSD � x

BSD � 1

BS1 � k

BS1 � x

BS1 � 1

RprocD

Rproci

Rproc1

RPi

Pass1

RP1 � i

RP1 � D

RPi � 1

RPi � D

RPD � 1

RPD � i

Ri

(1,a)

(D,c)

(i,b)

(D,f)

(1,d)

(i,e)

(i,h)

(1,g)

(D,i)

(i,b), ...

(D,c), ...

(1,d), ...

(D,f), ...

(1,g), ...

(i,h), ...

Pass0

RSi

Figure 5.7:Parallel Pointer-BasedGrace

As in the caseof other parallel join algorithms described earlier, the parallel version

of the Grace algorithm �rst repartitions each Ri into Ri � j sub-partitions on the basis of

the join attributes (which happen to be pointers), moves the objectsof eachRi � j to disk j

to form RSj , and then, in parallel, executesa sequential algorithm on each
�

RSj
� Sj � pair

without disk contention.

In pass0, Rproci readsRi , one object at a time, and depending upon the value of the

join attribute, either moves the object into an RPi � j or hashesthe object into one of the K

buckets of RSi . In pass1, Rproci readsRi � j (for all j
�

� i) one R-objectat a time, and hashes

each object into one of the K sub-partitions of RSj . As for pass 1 of the nested loops

algorithm, the reading and hashing of Ri � j in pass 1 takes place in phasesto eliminate

5.4Parallel Pointer -BasedGrace 197

contention for the disks. At the end of pass 1, each RSi contains K sub-partitions that

contain hashed R-objects. The hash function is chosenso as to cluster R-objectsby the

value of their join attributes. Therefore, BSi � j � j � 1 ������� K � 1, contains R-objectswith join

attributes smaller than that of any R-object in BSi � j
�

1.

In pass 1
�

j (j � 1 � 2 ������� K), for every i in parallel, BSi � j is read in, and the value of

the join attribute in each object is used as input to another hash function that further

re�nes the partitioning given by the �rst hash function. The range of this hash function

is TSIZE, a parameter chosenby the programmer. Once all of BSi � j has beenhashed into

an in-memory hash table, the table is processedin order. Common referencesto objects

in Si (i.e., referencesthat result in a collision when hashed)are in the samehash chain. If

it is assumedthat there are no more than MSproci � s dif ferent referencesto objectsin Si in

any one hash chain during the processingof that hash chain, all objectsfrom Si needed

during the processingof that hash chain can �t in memory; henceeachobject referenced

from S need only be read once in order to perform the join. The reading of the objects

from Si is accomplished by meansof a shared memory buffer of size G, asbefore.

5.4.2 Parameter Choices

During pass1
�

j, j � 1 � 2 ������� K, Rproci readseachR-object in BSi � j into a memory resident

hash table. The value of K should bechosensuch that eachBSi � j along with its associated

hash table overhead �ts entirely in memory.

TSIZE should besmall enough to not causeexcessivehash-tableoverhead becauseof

underutilization of memory and large enough so that the size of individual hash chains

is low. Theoretically, the minimum amount of memory that needsto be made available

to eachRproci , in pass0, to avoid thrashing is D
�

���

f uzz�

� Ri �

� r � B� blocks, where fuzz

makes room for the hash table overhead. In reality, even this threshold memory results

in thrashing becausethe working set for the algorithm is greater than the theoretical

198 Application and Validation of the Analytical Model

threshold memory and the LRU paging schemethen makes the wr ong decision, remov-

ing useful pagesprematurely. See[Sha86, Sto81] for more discussion on this problem.

The next section derives an approximation for the amount of extra I/O that takes place

when memory is insuf�cient.

5.4.3 Analysis

The disk band sizes during pass 0 and pass 1 are BandSizepass0 � PRi

�

PSi

�

PRSi

�

PRPi

and BandSizepass1 � PRSi

�

PRPi , where PRPi is the same size as in sort-merge because

there is synchronization between phases. Pass 0 involves reading objects from Ri,

one object at a time, and writing each object to either RPi or to one of the K buckets

in RSi . The corresponding I/O costs are PRi
� dttr

�

BandSize0 � , PRPi
� dttw

�

BandSize0 � and
�

PRi � i

�

K �

� dttw
�

BandSize0 � . The number of pageswritten to RSi has been increasedby K

to account for the fact that objects read from Ri � i are hashed into K buckets in RSi . The

additional costs incurr ed in pass 0 include � Ri �

� map to map the join attributes to their

corresponding Spartition, � Ri � i �

� hashto hash the Ri � i objectsinto one of K RSi -buckets and

� Ri �

� MTPP to move the Ri objectsin private memory to either RPi or RSi .

An urn model is used to derive an approximation for the amount of extra I/O that

takes place due to lack of memory in pass 0. In pass 0, R-objects from Ri are placed

in one of RPi � j or in one of the K buckets of RSi . The analysis computes the probability

that, just after a page belonging to RSi is hit (either in memory or causing a page fault),

that it gets hit again before it gets replaced. Once hit, a bucket page is replaced when

there are MRproci � B referencesto newer pages before it is hit again; the probability of

hashing t further objectswithout a secondhit is
�

1 � 1� K �

t . At any given time, some of

the pages in memory are partially �lled or read pages (current pages) and some pages

have been completely processedor �lled (�ll events), but which stay around because

they are recently accessedand have not aged enough. It is assumed that the D current

5.4Parallel Pointer -BasedGrace 199

pages for Ri and RPi � j stay in memory until processedcompletely becausethese pages

are processedat a much faster rate than the pagesin RSi .

For convenience, divide the hashing of objects after a hit into epochs; the �rst a0

objects,the next a1, and soon. The number of �ll events that have occurred at the begin-

ning of epoch q is a random variable, which can be approximated as follows. Sincethe

page replacement algorithm prefers clean pagesover dirty pages,the �ll events caused

by the processingof Ri can be ignored. The �ll rate for RPi � j is
� �

D � 1� � � B � � , and for

RSi is
�

1�

�

K �

� B � � � , the latter being negligible. Therefore, the number of �ll events is
�

H j
�

�

D � 1� � � B � � , where H j � å j � 1
n� 0an is the number of objectshashedat the beginning of

epoch j.

The probability that at most
�

H j
�

�

D � 1 � � � B � �

�

D buckets are not hit by the beginning

of the epoch, denoted p j , multiplied by the probability that a page getshit again during

epoch j, denoted y j , is the probability that the page is not present in memory during

a second hit in epoch j. Summing over all epochs and multiplying by � Ri � i � gives an

approximation to the expectednumber of times a page of RSi gets replacedprematurely.

The probability p j can be computed by referenceto Johnsonand Kotz [JK77, p.110],

who show that the probability of exactly k urns being empty after n balls are randomly

placed into murns is

Pr � X � k	

�

�

m
k

�

�

�

1 �

k
m

�

n
�

m� k � 1

å
j � 0

�

m � k
j

�

�

� 1�

j
�

1 �

j
m � k

�

n
�

Every premature replacement necessitatesone extra write (to replace the page) and

one extra read (when the page is referencedagain) for a total costof reading and writing

of � Ri � i �

� å j
�

1
�

pj
� yj � blocks.

In pass1, objectsin RPi � j are read,one object at a time, and eachobject is hashed into

200 Application and Validation of the Analytical Model

one of the K buckets in RSj . The costsof reading RPi and writing RSi are

PRPi
� dttr

�

BandSize1 � and
�

PRPi

�

K �

� dttw
�

BandSize1 �

�

respectively. Once again, the number of pageswritten to RSj has beenincreasedby K. It

takesa further time of � RPi �

� MTPP to move the objectsin private memory.

After pass1, the subsequentreading of the partitioned RSi , one bucket at a time, and

the corresponding Si objectsrequirestime

�

PRSi

�

PSi �

� dttr

�

1
K � 2

� PRSi
�

�

The band size for dttr is chosento be half the size, in blocks, of the objectsthat �t in the

hash table in order to approximate the actual behaviour, which is to read sequentially

objectsfrom a sub-partition of RSi followed by the corresponding objectsin Si and so on.

Eachobject in RSi is hashedonceduring the processingof eachbucket, for time � RSi �

�

hash. The cost of transferring objectsto shared memory is � RSi �

� MTPS
�

�

r
�

sptr
�

s� with

the corresponding context switching time of

2 � CS �

�

� RSi �

�

G�

�

r
�

sptr
�

s���
�

�

Finally, the setup costsfor mapping Ri and Si for reading, creating the new mappings

for RSi and RPi in pass0 and setting up RSi for reading in pass1 is

D �

�

openMap
�

PRi �

�

openMap
�

PSi �

�

newMap
�

PRSi

�

PRPi �

�

openMap
�

PRSi
� � .

5.5Model Validation 201

5.5 Model Validation

In order to validate the model and the analysis presentedearlier, experiments were run

that performed full joins on two relations with 409,600objectseach.A generateddata set

was used to populate the two relations for all the experiments presentedin this chapter.

The join attributes in Rweregeneratedby meansof a random number generator obtained

from the standardized testbed described in section 4.3.2.The size of data set is the same

asthat used in [MLD94]. The objectsin eachrelation wereof size128bytes. Rand Swere

partitioned across4 disks with one Rand one Spartition on eachdisk. Table 5.4contains

the values used for various parameters of the model.

5.5.1 Experimental Testbed

The testbeddescribed in section4.1was used to run validation experiments. The follow-

ing extensionswere made to the testbed for the validation experiments:

� the operating system kernel was rebuilt so that it put aside the minimum amount

of memory for use as DYNIX buffers. This changewas made to verify the earlier

assumption that memory mapping a regular DYNIX �le by-passesthe �le system

buffering and doesnot bene�t from DYNIX buffer memory.

� all the �le systems used for storing data for the experiments were rebuilt with a

�le system block size of 4K, the size of the DYNIX virtual memory page. Thus, all

I/O took place in 4K blocks, instead of 8K blocks that were used in experiments

in chapter 4. This change in �le system block size made the block size the same

as the virtual memory system page size. A similar changecould not be made for

experiments conducted earlier for historical reasons.

202 Application and Validation of the Analytical Model

Parameter Measured Value

CS 145µseconds

dtt see�gur e 3.12(a)

MTsp 0.31µseconds

MTss 0.31µseconds

MTps 0.31µseconds

MTpp 0.31µseconds

newMap see�gur e 3.12(b)

openMap see�gur e 3.12(b)

deleteMap see�gur e 3.12(b)

map 11µseconds

skew 0.98

compare 5.45µseconds

swap 4.3µseconds

transfer 2.1µseconds

hash 2 µseconds

Parameter Assumed Value

P 4

M variable

B 4096

D 4

� R� 409600

� S� 409600

r 128

s 128

sptr 4

hp 8

G 4096

Table 5.4: Validation Values of Model Parameters

5.6Predictions 203

5.5.2 Results

Figure 5.8shows the predicted and measured elapsedtimes for running the various join

algorithms with varying amounts of memory available. The discontinuities in the sort-

mergegraph occur when additional merging phasesare required. The curve in the Grace

graph at low memory levels results from thrashing caused by the page replacement

algorithm.

As is evident from the graphs, the model does an excellent job of predicting perfor -

mance for the various join algorithms in almost all conditions. In particular , there is a

closematch betweenprediction and actual performance for nestedloops and sort-merge.

All the experiments were repeated several times in order to factor out any small devi-

ations causedby the operating system (e.g.,page replacement) behaviour and to make

sure that the results were consistent,accurateand reproducible. For Grace,the approxi-

mation for I/O causedby thrashing at low memory levels is reasonablyaccurate;there

is scopefor further re�nement of this approximation. A major part of the dif ferencebe-

tween prediction and actual behaviour at low memory levels comesfrom the overhead

intr oduced by the particular replacement strategy used by the Dynix operating system.

Further re�nement of modelling this aspectof the pagereplacementschemewill bedone

in futur e work.

5.6 Predictions

Once the model hasbeenvalidated, it can be used to accurately predict the performance

of a join algorithm for any given set of resources;Figure 5.9 depicts the predicted per-

formance of the three join algorithms asa function of available memory with eachof R

and Spartitioned across4 disks. All the graphs follow the samepattern asthe validated

portion of the curves.

204 Application and Validation of the Analytical Model

800

1000

1200

1400

1600

1800

2000

2200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T
i

m
e
p
e
r

R
p
r
o
c

MRproci � � Ri �

Model
Experiment

(a) Nested Loops

450

500

550

600

650

700

750

0.01 0.02 0.03 0.04 0.05

T
i

m
e
p
e
r

R
p
r
o
c

MRproci � � Ri �

Model
Experiment

(b) Sort Merge

320

340

360

380

400

420

440

460

480

0.02 0.03 0.04 0.05 0.06 0.07

T
i

m
e
p
e
r

R
p
r
o
c

MRproci � � Ri �

Model
Experiment

(c) Grace

Figure 5.8:Model Validation

5.6Predictions 205

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
i

m
e
p
e
r

R
p
r
o
c

MRproci � � Ri �

(a) Nested Loops

400
500
600
700
800
900

1000
1100
1200
1300
1400

0.01 0.02 0.03 0.04 0.05

T
i

m
e
p
e
r

R
p
r
o
c

MRproci � � Ri �

(b) Sort Merge

340
350
360
370
380
390
400
410
420
430
440

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
i

m
e
p
e
r

R
p
r
o
c

MRproci � � Ri �

(c) Grace

Figure 5.9: Model Predictions

206 Application and Validation of the Analytical Model

5.6.1 Speedup and Scaleup

Further predictions with the model can be made to study the speedup and scaleup be-

haviours of the threeparallel join algorithms. Speedup is an indication of performance

impr ovement as available physical resourcesare increasedwhile keeping the problem

sizeconstant. Scaleupalsomeasuresthe effect on performance of increasingall available

resourceswhile at the sametime increasing the problem size by the sameproportion. In

the caseof joins, the problem size is indicated by the size, in blocks, of R and Sand the

relevant resourcesare CPUs,disks and physical memory. Thesepredictions signi�cantly

stressthe model and should illustrate any obvious anomalies.

Figure 5.10presentsthe performance of the three join algorithms as the number of

disks and other resourcesare increased;in eachcase,the size of R and Sis kept �xed at

6400blocks each.The number of CPUs is the sameas the number of disks and absolute

memory per disk is kept �xed, resulting in a corresponding increasein total memory as

the number of disks is increased,i.e., MPi increases,which is the total memory available

for processingof relation P. For eachjoin algorithm, thereare two graphs; one shows the

actual reduction in time asresourcesare increasedwhereasthe secondplots the speedup

factor. The speedup factor is simply the time spent with 1 disk divided by the time taken

with D disks. The optimal speedup for an algorithm is linear speedup and is depicted in

�gur e 5.10for comparison.

The nested-loopsalgorithm displays good speedup behaviour with someinteresting

features. For nested-loops, increasing resourcesresults in a performance increasebetter

than linear speedup. This behaviour is causedby the random reading of Sobjectsin the

two passes.When the number of disks is increasedwhile keeping Mi constant, the rela-

tive amount of memory available for random I/O substantially increases,which means

there is a signi�cantly greater probability that a referenced page is already in memory.

5.6Predictions 207

0

2000

4000

6000

8000

10000

12000

4 8 12 16 20

T
i

m
e
p
e
r

R
p
r
o
c

Number of Disks

Mi = 50
Mi = 100
Mi = 200

(a) Nested Loops – Time

0

5

10

15

20

25

30

35

4 8 12 16 20

S
p
e
e
d
u
p

Number of Disks

Mi = 50
Mi = 100
Mi = 200
Optimal

(b) Nested Loops – Speedup

0

500

1000

1500

2000

2500

3000

3500

4 8 12 16 20

T
i

m
e
p
e
r

R
p
r
o
c

Number of Disks

Mi = 20
Mi = 40

Mi = 160

(c) Sort Merge – Time

5

10

15

20

4 8 12 16 20

S
p
e
e
d
u
p

Number of Disks

Mi = 20
Mi = 40

Mi = 160
Optimal

(d) Sort Merge – Speedup

100
200
300
400
500
600
700
800
900

1000
1100

4 8 12 16 20

T
i

m
e
p
e
r

R
p
r
o
c

Number of Disks

Mi = 62
Mi = 65

Mi = 240

(e) Grace– Time

5

10

15

20

4 8 12 16 20

S
p
e
e
d
u
p

Number of Disks

Mi = 62
Mi = 65

Mi = 240
Optimal

(f) Grace– Speedup

Figure 5.10:Speedup
�

P � D �

208 Application and Validation of the Analytical Model

As an illustration, consider the following setup:

LR � LS � 409600� D � 1 � B � 4096� Mi � 1600� B � r � s � 128� and skew � 1 � 0 �

With one disk to work with, all the 409600Sobjectsare retrieved in a single passand the

total number of input operations is:

YLRU
�

409600� 409600� 128� 4096 � 409600 � 1600 � 409600� � 358468�

Now, if the number of disks is increasedto 2, the size of each Si is reduced to 204800

records and eachSproci is only responsible for retrieving 204800S records. Half of the

Si records are read in pass0 of the nested loops becauseof the dir ect join, without con-

tention, on the samedisk and the other half are read in pass1 during the low contention

staggered reading. Therefore, 102400records are retrieved in each pass resulting in a

total

2 � YLRU
�

204800� 204800� 128� 4096� 204800� 1600 � 102400� � 154007

disk blocks read. Thus, increasing the number of disks from 1 to 2 results in a speedup

factor of 358468
154007 � 2 � 32ascompared to a linear speedup factor of 2. Similarly, with 8 disks

in the above example, total number of disk blocks read is

YLRU
�

51200� 51200� 128� 4096 � 51200� 1600� 6400� � 1571 in pass0, and

YLRU
�

51200� 51200� 128� 4096� 51200 � 1600 � 44800� � 1600 in pass1

for aspeedup factor of 358468
1571

�

1600 � 113in the reading of Sasopposed to the corresponding

linear speedup factor of 8. This component of the total elapsed time causesthe time to

fall rapidly .

5.6Predictions 209

The sort-merge algorithm displays speedup behaviour that is closest to linear

speedup. It starts with a linear speedup and stays that way until reaching its satura-

tion point after which it begins to lag off. The Gracealgorithm displays linear speedup

for portions of its curve but the speedup factor is not close to optimal, i.e., the line has

a slope much lessthan the desired value of 1.0. This behaviour is explained by the fact

that the Gracealgorithm doesnot make useof any extra memory that is made available,

which implies that increasingresourcesdoesnot succeedin impr oving the performance

of the Gracealgorithm by an equivalent proportion. Other moremodern hash-basedjoin

algorithms, such asthe hybrid-hash, make better use of available memory.

Figure 5.11 on page 211 presentssimilar results for the scaleup measurements. The

sizes of R and S are increased in conjunction with a corresponding increasein avail-

able resources. In an ideal situation, this should result in time remaining constant; in

practice, perfect scaleup is hard to achieve. In order to achieveperfect scaleup,the algo-

rithms must employ perfect parallelism. As can be seenfrom �gur e 5.11, none of the al-

gorithms displays behaviour closeto the desired one. In eachcase,not only is the curve

much lower than the desired value, but it also continues to a downwar d drop, which

means that increasing parallelism achievesonly marginal speedup. To understand the

reasonfor this behavior, the total cost was broken down into its individual components

and biggest causeof the problem is the memory mapping costs associatedwith each

algorithm. The reasonis that the memory mapping for the multiple partitions of a �le

structure is done in a serial manner. Therefore, as the number of partitions is increased,

the memory mapping setup costs increaselinearly and soon become quite signi�cant.

Clearly, this behaviour negatively impacts on performance and can be solved by paral-

lelizing the initial setting up of the various partitions of the �le structure. However, it is

not obvious how this parallelization can be ef�ciently achieved.

In order to seethe impact of the serial mapping setup costs,the scaleupgraphs were

210 Application and Validation of the Analytical Model

recomputed after subtracting the memory mapping setup costs from total costs. The

resulting graphs are presented in �gur e 5.12 on page 212, and the results are clearly

much better. All the algorithms display similar scaleup behaviour. Scaleupis not very

good in the lowest part of the curve but after about 4 disks, the curves straighten out

and stay horizontal indicating near-perfect scaleupafter that point.

5.7 Summary

The analytical model developed in chapter 3 was used to predict the performance of the

parallel multi-disk versions of threedatabasejoin algorithms, namely, nestedloops, sort-

merge and Grace. The parallel versions were developed as part of this work and were

especially tuned for performance in the EPD environment. A unique aspectof the algo-

rithms is the use of a virtual pointer as the join attribute, which results in considerable

time savings by eliminating the sorting or hashing of one of the two joining relations.

Note however, that the use of pointer -basedjoins is not appropriate in all applications,

e.g., the use of a pointer as the join attribute makes updates to the databasemuch more

expensive. The accuracy of the analytical model has been veri�ed by conducting ex-

periments on a controlled testbed. This chapter also highlighted a fundamental problem

associatedwith abrogating control to the operating systemfor making pagereplacement

decisions. In a rigid operating system, this lack of control can seriously hamper perfor -

manceunder speci�c scenarios.Therefore, to achieve the maximum performance out of

the EPDapproach,the useof an operating systemsystemwith �exible pagereplacement

and related support is required.

5.7Summary 211

1400

1800

2200

1280025600384005120064000

T
i

m
e
p
e
r

R
p
r
o
c

� R�

�

� S� in Blocks

Mi = 50
Mi = 1600

(a) Nested Loops – Time

0.4

0.5

0.6

0.7

0.8

0.9

1

1280025600384005120064000

S
p
e
e
d
u
p

� R�

�

� S� in Blocks

Mi = 50
Mi = 1600
Optimal

(b) Nested Loops – Speedup

400

500

600

700

800

900

1280025600384005120064000

T
i

m
e
p
e
r

R
p
r
o
c

� R�

�

� S� in Blocks

Mi = 20
Mi = 160

(c) Sort Merge – Time

0.4

0.5

0.6

0.7

0.8

0.9

1

1280025600384005120064000

S
p
e
e
d
u
p

� R�

�

� S� in Blocks

Mi = 20
Mi = 160
Optimal

(d) Sort Merge – Speedup

300

400

500

600

700

1280025600384005120064000

T
i

m
e
p
e
r

R
p
r
o
c

� R�

�

� S� in Blocks

Mi = 62
Mi = 160

(e) Grace– Time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1280025600384005120064000

S
p
e
e
d
u
p

� R�

�

� S� in Blocks

Mi = 62
Mi = 160
Optimal

(f) Grace– Speedup

Figure 5.11: Scaleup(P � D ��� R��� 3200)

212 Application and Validation of the Analytical Model

0.4

0.5

0.6

0.7

0.8

0.9

1

1280025600384005120064000

S
p
e
e
d
u
p

� R�

�

� S� in Blocks

Mi = 50
Mi = 1600
Optimal

(a) Nested Loops

0.4

0.5

0.6

0.7

0.8

0.9

1

1280025600384005120064000

S
p
e
e
d
u
p

� R�

�

� S� in Blocks

Mi = 20
Mi = 160
Optimal

(b) Sort Merge

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1280025600384005120064000

S
p
e
e
d
u
p

� R�

�

� S� in Blocks

Mi = 62
Mi = 160
Optimal

(c) Grace

Figure 5.12:Scaleupwithout Mapping Overhead (P � D ��� R��� 3200)

Chapter 6

Unresolved Issues and Future Work

As stated earlier, someaspectsof constructing a persistent system basedon the EPD ap-

proach to memory mapping have not beendealt with in this dissertation due to the size

of the undertaking. A deliberate decision was made to concentrateefforts on designing

and building an EPD basedstore that supported multiple simultaneously accessibleper-

sistent areasand on extensively measuring and analyzing the resulting store. Someof

the unresolved issueshave been dealt with by other researchers while some problems

are still open research issues.This chapter describesthe major unresolved problems, by

meansof a partial survey of related work, and futur e work.

6.1 Concurrency Control

Concurrency control dealswith front-end concurrency mentioned in section3.3,i.e.,how

to deal with multiple simultaneous readsand writes to a persistent storewhile maintain-

ing the consistency of data. The concurrency control problem has been studied exten-

sively by the databasecommunity and there are excellent solutions available, e.g., see

[BK91] for a good survey of concurrency control techniques for advanced databasesys-

tems. However, the traditional concurrency control solutions areoften not dir ectly appli-

cableor are inef�cient for persistent systems,especially page-basedpersistent systems.

213

214 Unresolved Issues and Future Work

Most of the persistent systems built so far have been single-user systems that ig-

nore problems of concurrent accessesto a persistent store by multiple users and appli-

cations. In fact most existing persistent systems provide no support for concurrency

control [RD95a]. The concurrency problem as it applies to persistent systemsremains a

largely open research issue,although somework dealing with the problem is beginning

to appear (see[RD95b]). For example, Inohara, etal [ISU
�

95] have proposed a versioned

optimistic (VO) page basedschemefor memory mapped persistent systems.

One of the major problems with using conventional concurrency control schemes

is the granularity of locking. Conventional schemeswork best for object-grain locking

whereaspersistent systems tend to be page-based;providing object level locking in a

page-basedpersistent store is quite problematic. A central issue to be resolved is to de-

termine what constitutes a unit of data for the purposes of locking, atomicity, etc. While

it might be desirable to use the individual objectsin a �le structure as the units of data

on which atomic operations are permitted, this is clearly not feasible in the proposed

architecture of � Database with implicit concurrency (it is possible with explicit concur-

rency). This support requires the availability of an objectmanager, as in object-oriented

databasesystems/servers such as ORION [KBC
�

88] and GemStone[PSM87]. Further-

more, it must be possible to lock arbitrary collection of bytes in memory, a luxury not

usually available to a mapped system.

The VO schemedeveloped by Inohara, et al, derives from conventional optimistic

schemeswhile adding support for multi-version page images and a new validation al-

gorithm. Optimistic schemesusually work by letting concurrent clients work on dif fer-

ent versions of objects;eachclient updates its own copy of data independently of other

clients. At transaction commit time, a validation algorithm attempts to determine if the

changesmade by the speci�c transaction are consistent with other committed transac-

tions. If not, the transaction is aborted. Practical validation algorithms attempt to seri-

6.1Concurrency Control 215

alize asmany aspossible (instead of all) transactions that could, in theory, be serialized;

doing otherwise has been claimed to be an NP-complete problem. Thus, some transac-

tions that could be committed safely are aborted. The validation algorithm used by the

VO schemecommits all read-only transactions and is claimed to perform better than the

original optimistic schemesfor other transactions.

6.1.1 Integration of Concurrency, Distribution and Persistence

As part of his doctoral work Munr o [Mun93] investigated the integration of distribution

and concurrency mechanisms into an existing orthogonal persistencesystem, Napier88

[Bro89]. Munr o modi�ed the Napier88 architecture and Brown's stable store, while

maintaining upwar d compatibility to the extent possible, in the processof his inves-

tigation. One of the main contributions of Munr o's work is the development of a new

layered architecture,now called Flask [MCM
�

94], whose principal aim is to provide sup-

port for building genericconcurrency mechanismsfor persistent stores.Like � Database,

Flask rejectsthe notion of hard-wiring �xed concurrency schemesinto the store itself. In-

stead,it provides a framework on top of the store that canbeexploited to build whatever

notions of concurrency are desirable for speci�c applications. Future work on concur-

rency in � Database can gain from an incorporation of ideas from Flask. For instance,

[MCM
�

94] includes a design of concurrent shadow paging mechanisms for providing

stability (seesection6.2for a discussion of stability in persistent stores). In Flask,stability

is provided in a layer built on top of the concurrency layer.

6.1.2 Scalability

A related issueis that of scalability along two dimensions, namely, the number of simul-

taneously accesseddatabasesand the number of concurrent applications accessingthese

216 Unresolved Issues and Future Work

databases.Increasing the number of databasesaccessedby a � Database application re-

quir esa linear increasein the number of representativesegments(i.e., UNIX processes)

and the accompanying resourcessuch as physical memory for resident setsand swap

spaceon disk. Currently, � Database does not support concurrent accessto the same

databaseby multiple applications. When such support is implemented in the futur e, an

important consideration is to ensure that multiple applications share common resources

allocated for a single database. In other wor ds, there should not be a multiplicative ef-

fect on the amount of resourcesrequired asthe number of applications and databasesis

increased.

6.2 Recovery Control

It is important for a persistent system to guarantee that all stored data is in a consistent

state, i.e., the system must maintain the integrity of all data. This guarantee must be

made in the faceof system failur e, such assystem crashesand unsuccessfuldisk writes

causedby disk failur e. Recoverycontrol is the mechanism to guarantee integrity of data

by being able to recover from system failur es. On restart after a failur e, the recovery

processreturns the system to a previously recorded consistent state; the property of

a system to recover from failur es is also called stability. A number of proposals for

stability in persistent systemshave appeared in the literatur e (see[RHB
�

90] for a list of

references). Some of these proposals, especially the ones for page-basedsystems, can

be adapted for the EPD system described in this dissertation. The rest of this section

provides a general description of someof the proposed recovery schemes.

6.2Recovery Control 217

6.2.1 Shadow Paging

The earliest proposal for stability in persistent storesfor databasesystems[Lor77] devel-

oped a new schemecalled shadow paging, which hassincebeenadapted by many other

proposals.

The essential idea in a stable persistent system is to move the system from one con-

sistent state to another asupdates are made. If the system crashesbefore fully progress-

ing to a new state, it must go back to a previous consistent state before applications are

allowed to resumeafter restarting. Two basic operations required to implement this fa-

cility are the ability to perform an atomic update and the ability to distinguish the before

and the after statesof the system with respectto a commit or stabilize operation.

Challis's algorithm [Cha78] provides the underlying mechanism for implementing

the atomic update operation. The basic idea is that a new copy of the data stored in

the persistent system is made after each stabilize operation; each copy of the data is

assignedaversion number that distinguishes it from all other copiesand canalsobeused

to determine the temporal ordering of two copies. Eachcopy of the data also contains a

mapping table that canbeused to locateall the data components on disk. The location of

the mapping table for a copy of the data on disk is maintained in a �xed location on disk

called a root block; there are two root blocks with eachdescribing a dif ferent consistent

copy of data. The version number of the data pointed to by a root block is stored both

at the beginning and the end of the root block; if the two copies of the version number

stored in a root block match, the data copy pointed to by the root block is consistent. All

changesto data are made to the current (or new) copy. In order to commit an update,

the root block containing the oldest version number is updated to refer to the current

updated copy of data. After a successfulwriting of the root block, the old copy of data

can be removed. In the caseof restarting after a failur e, the status of the two root blocks

218 Unresolved Issues and Future Work

is checkedto �nd the one with the latest consistentversion number, which is then used to

revert the stateof the system to the consistent state referred to by the root block. Should

both root blocks be corrupted, it is called a catastrophic failur e and not covered by the

recovery mechanism.

The basic shadow paging schemeprovides recovery control for a paged persistent

store and is an adaptation of the expensive atomic update procedure described above.

In order to implement shadow paging, a mapping between the virtual addressspaceof

the persistent store to the stored pageson disk is maintained. The mapping is called the

disk page table and canbeused to locateall pagesof disk that make up a virtual address

space.At the start of an update operation, a transient copy of the disk pagetable is made

in primary memory, which is used to locate pageson disk to service page fault. When

a location in a page in main memory needs to be changed, the paging system createsa

copy of the pagebeing updated on disk, if a copy doesnot already exist, and changesthe

transient disk page table to refer to the new copy. The copy of the page on disk is called

a shadow page and ensuresthat a dirty page is never written back to the samelocation

where it was read from. Note that the creation of a shadow page does not involve an

actual copying of data from the original disk page to the new page. Instead, the image

of the original page in memory is simply written back to a new location on disk.

Shadow paging makes copies of only those pagesof data that are actually modi�ed

as opposed to copying all data as is done in the atomic update operation. In order

to perform the stabilize operation, the system writes back all dirty pages in primary

memory to the shadow disk pages,copies the transient disk table to the disk in a new

location, and then updates the root block of the systemin a manner similar to the atomic

update operation. The above is a high-level description of the shadow paging scheme;

see[RHB
�

90] for more details.

It is non-trivial to implement a shadow paging schemeon top of an existing paging

6.2Recovery Control 219

mechanism; someoperating system support is necessary.

6.2.2 Write Ahead Logging

Conventional write ahead logging schemes(e.g., see [RM89]) can be used for paged

persistent storesprovided the paging mechanism can be modi�ed to defer the writing

back of dirty pagesuntil explicitly requested. The essential idea is to let the persistent

data bemodi�ed in placeduring updates and to make copiesof all changesmade to data

in a separatepersistent log. The actual persistent data is not written back to disk until

after the changeshave beensafely written into the log. In caseof failur e, the system can

berestored to a consistentstateby meansof the logs written sincethe last checkpoint. An

earlier version of Texas[SKW92] used a write-ahead logging scheme. Again, operating

system support is essential.

6.2.3 PageDif �ng

One problem with logging entire pages is the inef�ciency caused by saving too much

unchanged data, e.g., changing a single byte results in the entire containing page be-

ing logged. What is needed is the ability to checkpoint subsetsof pages,or sub-pages.

Dirty bits for sub-pagesis one possible solution but it requiresspecial hardwar e and/or

software support. A simpler solution that requiresvirtually no hardwar e and software

support is to saveonly the changed portions of a page by performing a wor d-by-wor d

comparison of the modi�ed page with a clean copy. This technique is called pagedif�ng

and has been use by Texas,QuickStore and others. Write protection traps are usually

employed in page dif �ng; when the paging system detects a write fault exception, it

copies the contents of the faulted page into a separateclean pages buffer, un-pr otects

the original page and lets the execution continue. At the time of committing (or, when

220 Unresolved Issues and Future Work

a dirty page needsto written back due to paging), the current dirty pagesare compared

against their respective clean copies and the dif ferencesare used to generate logs. The

dirty pages themselves are not written back to the disk until after logging is complete.

A spacesaving optimization used by Texasemploys a bounded buffer for storing clean

copiesof dirty buffers; when the buffer �lls up, somedirty pagesare written out.

Finally, the problemsof concurrency and recovery control becomeevenmoredif �cult

when the persistent store is distributed; [RD95b] contains someearly work to deal with

the problem on distribution in persistent systems.

6.3 Support for Virtual Pointers

Recall, the current version of � Database does not support virtual pointers for persis-

tent objects. Virtual pointers are used internally by C++ to implement virtual member

functions and virtual baseclasses,two important reuse mechanisms in C++. This sec-

tion assumesa basic understanding of the C++ virtual pointer implementation. Virtual

pointers embedded in an object are stored aspart of the object memory storage and are

initialized by the compiler when the object is �rst createdduring program execution.

As shown in �gur e 6.1(a),a virtual pointer embedded in an object refers to the ap-

propriate virtual function table(V.F.T.), which is stored in transient memory in the text

segment. There is exactly one virtual function table createdby the compiler for eachtype

declared in an application. Sincethe exact location in memory of virtual function tables

is determined only at the program linking/loading time, the values of virtual pointers

stored in an object have a meaning only during the life of the program. This restriction

does not causeany problems for transient objectsbecausethe objectsalso vanish when

the program terminates, and are recreated and reinitialized when the program is run

again.

6.3Support for Virtual Pointers 221

V.F.T.

A
transient
object

TEXT
segment

transient
segment

(a) Object stored in transient area

V.F.T.

A object

TEXT
segment

segment

(shared)

persistent

persistent

members

persistent
to transient

pointer

(b) Object stored in persistent area

Figure 6.1: Embedded Virtual Pointer Problem

However, as shown in �gur e 6.1(b),once an object with embedded virtual pointers

is made persistent, a problem occursbecausethe objecton disk now contains a reference

to a transient object,and assuch, the integrity of embedded virtual pointers is no longer

guaranteed by the compiler acrossprogram invocations. It is up to the persistent system

to ensure that the virtual pointers embedded in a persistent object are properly initial-

ized at object loading time to refer to the current locations of the corresponding virtual

function tables.

A solution adapted in O++ [BDG93] to support virtual pointers works by modifying

all user-de�ned constructors to perform an initialization of embedded virtual pointers

if a special global condition is true; otherwise, the normal constructor code is executed.

When a persistent pointer to a non-memory-r esident object is dereferenced, the system

loads the disk page(s)containing the object into memory and invokes a constructor after

asserting the special global condition mentioned earlier. This special invocation of the

constructor results in the virtual pointer(s) embedded in the newly loaded object being

222 Unresolved Issues and Future Work

initialized; the special global condition is resetafter the invocation to allow subsequent

calls to the sameconstructor to proceednormally .

The O++ solution can be easily implemented for � Database with the help of a front-

end translator. However, this solution violates the � Database design objective of elimi-

nating pointer modi�cation every time an object is reloaded. While somepointer modi�-

cation is unavoidable in order to support virtual pointers, the restof this sectionoutlines

a possible solution that signi�cantly reducesthe extent of such modi�cations. The basic

idea is illustrated in �gur e6.2and is basedon the observation that in a persistent system

the total number of dif ferent typesof objects is much smaller than the total numberof

objects.

members

V.F.T.m

members

V.F.T.2

members

V.F.T.
�

mV.F.T.
�

2

V.F.T.1

TEXT
segment

segment

(shared)

persistent

DCBA

V.F.T.
�

1

Figure 6.2:Ef�ciently Supporting Virtual Pointers

When the representativefor a segment is �rst created, it queries the run-time system

to locate all virtual function tables (VFTs) and copies them into �xed locations in the

persistent area. It is important to note that the VFT for a given type is always copied

6.4Implementation of Inter -Database Pointers 223

to the samelocation in the persistent areaso that any existing persistent pointers to the

VFT stay valid. With the VFT copies in place, when a new persistent object of a type

with virtual members is created, its embedded virtual pointers are initialized to refer to

the persistent copies of the VFTs instead of the transient VFTs. When such an object is

reused during a subsequentexecution, the integrity of its embedded virtual pointers is

guaranteed. This scheme,therefore,avoids the costof pointer modi�cation eachtime an

object is reloaded. Instead, the schemeincurs a one time initialization costof copying the

VFTs when the persistent segment is �rst made accessible.This solution would require

some compiler support to ensure the correct initialization of VFT pointer for an object,

or somecompiler-level modi�cations by � Database.

6.3.1 Persistent Code

� Database does not contain any mechanisms for storing compiled code in the persis-

tent store becauseof the size of the undertaking and due to an inherent con�ict with

the � Database design goal to eliminate swizzling of pointers. As with virtual pointers,

futur e versions of � Database may have to compromise this goal to make code persist

but still retain the performance bene�ts of not having to swizzle pointers relating data.

Someof the basic issuesin persistent code are similar to persistent virtual pointers dis-

cussedin the previous section. In essence,loading and linking of code is just a complex

form of pointer swizzling. A detailed discussion of these issuesis beyond the scopeof

this work; see[BDBV94] for somerelevant material.

6.4 Implementation of Inter -Database Pointers

As discussedearlier, a system that supports simultaneous accessto multiple persistent

areashas to deal with inter- aswell as intra-database pointers. Providing a uniform in-

224 Unresolved Issues and Future Work

terface for the two types of pointers, while desirable, results in very poor performance

becauseof the extra cost involved with dereferencing inter-databasepointers. Conse-

quently, most systemssettle on a dif ferent representation for the two types of pointers.

Recall, in ObjectStore,a user has to explicitly declare inter-databasepointers.

An inter-databasepointer, by de�nition, has two logical components: a referenceto

a databaseor persistent area,and the location of the referent object within the persistent

area. The current version of � Database does not support inter-databasepointers but

doesallow inter-databasepointers to be passedamong segments,i.e., the entity derefer-

encing an intra-database pointer from another segment has to use its knowledge about

the missing component and get the pointer dereferencedwithin the addressspaceof the

segment's representative. This lack of support is a clearly unacceptable situation and

futur e work must concentrate on a suitable implementation of inter-databasepointers.

The rest of this section discussessomerelated issues.

Inter-databasepointers can be implemented by means of smart or long pointers. A

smart pointer is an abstractdata type(ADT) that encapsulatesthe information neededto

representan inter-databasepointer: the name of the containing database,the virtual ad-

dressof the referent objectwithin the corresponding persistent areaand any other perti-

nent information (e.g.,accessinformation for the object). In addition, a smart pointer has

a method that is invoked when an instance is dereferenced. For � Database, this method

can createa representative for the database,establish a mapping, causethe virtual ad-

dressof the object to be dereferencedwithin the addressspace,and the data copied out

of the representativesegment. After the dereferencing hasbeencompleted, the represen-

tative can be destroyed. The per dereferencemapping costsin this procedure represent

a high cost,and yet, it is the only probablesolution if the semanticsof the inter-database

pointers have to be kept invisible at the user level. What is needed is a mechanism to

savethe context at the �rst dereferenceuntil after the last pointer that needsto be deref-

6.5Modelling 225

erenced in the same context has been processed. If the inter-databasepointers can be

made visible at the program level (e.g.,as in the with clausein PASCAL), it is possible

to implement the above solution at a reasonablecost.

6.5 Modelling

The analytical model developed aspart of this work does an excellent job of predicting

performance but there are several areaswhere new work or re�nement of existing work

can be done:

Modelling disk contention: When multiple disk requestsarrive at a disk at the same

time, the current model leavesthe disk arbitration mechanism unspeci�ed, which

can result in some error, especially for algorithms that causesigni�cant disk con-

tention. It is possible to model the contention at the disk analytically or changethe

DTT measurements to include amortized disk contention costs.

More hash-based algorithms: There is scopeto investigate more hash-basedjoin algo-

rithms given the importance of these algorithms; the more modern hash-based

algorithms make much better use of available memory than the Gracealgorithm.

Also, there is a need to develop new pointer -basedalgorithms that further exploit

the EPD environment.

Better modelling of the page replacement strategy: In the analysis of the Grace algo-

rithm an attempt has been made to model the thrashing that occurs when the

underlying page replacement algorithm makes non-optimal choices. While the

attempted modelling produced acceptableresults, there is scopefor further re�ne-

ment.

Chapter 7

Conclusions

Chapter 6 outlines some unresolved issuesand much work that still needs to be done.

In this chapter, I summarize what hasbeendone.

7.1 Review of Work Done

A number of objectives that were set out have been achieved. The work done as part

of this dissertation has been made available to the research community as three pub-

lished articles, [BGW92], [BGNR96b] and [BGNR96a]. The achievementscan be broadly

classi�ed into the following categories.

7.1.1 Static Type Safety

One of the fundamental motivations behind pursuing a single-level store is the desire

to ensure type safety for accessingpersistent data just like for transient programming

language data. An attempt to achieve statically type checked accessto a databasehas

been partially successful. Currently, static type safety cannot be guaranteed for access

to the UNIX �le system and the storagemanagement of a �le structure's addressspace.

However, oncethesetwo aspectsof a �le structure are speci�ed correctly, all subsequent

accessto the database�le structure are statically type-checked. The latter constitutes the

227

228 Conclusions

majority of referencesto a typical �le structure.

7.1.2 Development of the EPD Approach

The rationale for the EPD approach to memory mapping was developed based on an

extensive survey of other related work. Using the EPD approach in conjunction with a

world view, which is not �at and envisions persistent data objectsbeing stored in col-

lections of related objects,posesspecial challengesand problems. A working solution

to theseproblems was investigated, developed and painstakingly measured. The solu-

tion has beenshown to work remarkably well in spite of several outstanding problems

someof which may indeed defy solution within the softwarenon-architectural platform.

The methodology that has been developed allows dir ect use of virtual memory point-

ers without any modi�cation for referring to persistent and transient objectsalike while

allowing simultaneous accessto multiple persistent areasor databases.

7.1.3 Experimental Work

Extensive experimentation is a novel and important part of this work. No other project

has documented experimental results obtained from real or prototypical programs run

on a memory mapped single-level store. Experiments were conducted to demonstrate

the feasibility and viability of the EPD approach, to study the behaviour of parallel al-

gorithms in an EPD environment, and for validating an analytical model of the system.

In order to conduct all theseexperiments, a tightly controlled testbed was designed and

developed. The testbed provided instrumentation support and allowed consistent ex-

periments to be conducted with precision.

7.1Review of Work Done 229

7.1.4 Feasibility Studies

I have shown that the EPD approach to memory mapping is an attractive alternative

for implementing traditional �le structures,both sequential and parallel, for databases.

I have also presenteda convincing casefor using the EPD baseddatabasesin complex

design environments such as CAD/CAM, text management and GIS. EPD based �le

structures are simpler to code, debug and maintain, while giving comparable perfor -

mancewhen used stand-alone or on a loaded system than for traditional �le structures.

Further, buffer management supplied through the page replacement schemeof the op-

erating system seemsto provide excellent performance for many, though not all, access

patterns. Finally, thesebene�ts can be made available in toolkit form on any UNIX sys-

tem that supports the mmap system call.

Signi�cant work was also done towards the study of parallel multi-disk �le struc-

tures. Data partitioning is an important strategy essential for impr oving performance

of persistent storesin the faceof a primary to secondary storage speeddisparity . Parti-

tioned �le structuresand parallel accessmethods were found to work remarkably well in

the EPD environment. The work on parallel structuresincluded the design of a generic

concurrent retrieval algorithm and related tools.

7.1.5 Analytical Modelling

I have designed and validated a quantitative analytical model for databasecomputing

in an EPD environment. The model is successfully used to make accurate predictions

about the real time behaviour of threedif ferent parallel join algorithms, namely, nested-

loops, sort-merge and a variation of Grace. The EPD methodology allows the use of

virtual pointers asthe join attributes, which intr oducessigni�cant performance gain by

eliminating the need to sort/hash one of the two relations. The analysis of the join al-

230 Conclusions

gorithms also highlighted an inherent drawback in single-level stores: the lack of con-

trol over buffer management on the part of the databaseapplication results in incorrect

decisions being made at times by the underlying page replacement strategy. While ac-

cepting this inef�ciency , I have demonstrated two approachesto achieving predictable

behaviour, an essentialproperty in a databasesystem. With single-level storesbecoming

more common, it is my hope that futur e research and development in operating system

architecture will make it feasible for databaseapplications to exercisemore control over

the replacement strategies used [AL91]. There is scopefor further impr ovement in the

design of the model, especially in the modelling of the underlying paging behaviour.

Future work will involve extending the model to other memory mapped environments

in order to perform comparative studies. It will also be an interesting exerciseto explore

the applicability of the model to traditional join algorithms.

Bibliography

[AACS87] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and MarcSnir. A Model

for Hierarchical Memory. In ACM STOC, pages305–314,May 1987.

[ABC
�

83] M. P. Atkinson, P. J.Bailey, K. J.Chisholm, P. W. Cockshott, and R.Morrison.

An Appr oach to Persistent Programming. TheComputerJournal, 26(4):360–

365,November 1983.

[AC88] Alok Aggarwal and Ashok K. Chandra. Communication Complexity of

PRAMs. In ICALP, pages1–17,1988.

[ACFS94] B. Alpern, L. Carter, E. Feig, and T. Selker. Uniform Memory Hierarchies.

Algorithmica, 12(2/3):72–109,August/September 1994.

[ACS87] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Hierarchical Memory

with Block Transfer. In IEEEFOCS, pages204–217,1987.

[ACS89] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. On Communication

Latency in PRAM Computations. In ACM SPAA, pages11–21,1989.

[AHU83] A. V. Aho, J.E. Hopcroft, and J.D. Ullman. Data StructuresandAlgorithms.

Addison-W esley, Reading, Massachusetts,1983.

[AL91] Andr ew W. Appel and Kai Li. Virtual Memory Primitives for User Pro-

grams. In 4th InternationalConferenceon ArchitecturalSupport for Program-

ming Languagesand OperatingSystems, pages 96–107,SantaClara, Califor -

nia, U. S.A., April 1991.

[AM85] Malcolm P. Atkinson and Ronald Morrison. Proceduresas Persistent Data

Objects. ACM TransactionsonProgrammingLanguagesandSystems, 7(4):539–

559,October 1985.

231

232 BIBLIOGRAPHY

[Atw90] Thomas Atwood. Two Appr oaches to Adding Persistence to C++. In

A. Dearle et al, editor, ImplementingPersistentObjectBases:Principlesand

Practise,Proceedings of the Fourth International Workshop on Persistent

Object Systems,pages369–383.Mor gan Kaufmann, 1990.

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. The Input/Output Complexity of

Sorting and RelatedProblems. Communicationsof theACM, 31(9):1116–1127,

September1988.

[BAC
�

90] H. Boral, W. Alexender, L. Clay, G. Copeland, S. Danforth, M. Franklin,

B. Hart, M. Smith, and P. Valduriez. Prototying Bubba, A Highly Paral-

lel DatabaseSystem. IEEE Transactionson KnowledgeandData Engineering,

2(1):4–24,March 1990.

[BCD72] A. Bensoussan,C. T. Clingen, and R.C. Daley. The Multics Virtual Memory:

Conceptsand Design. CommunicationsoftheACM, 15(5):308–318,May 1972.

[BDBV94] S.J.Bushell, A. Dearle, A.L. Brown, and F.A. Vaughan. Using C as a

Compiler Target Language for Native Code Generation in Persistent Sys-

tems. In Malcom Atkinson, David Maier, and Veronique Benzaken,editors,

PersistentObjectSystems, pages 16–42,Tarascon, France, September 1994.

Springer-Verlag.

[BDG93] A. Biliris, S. Dar, and N. H. Gehani. Making C++ Objects Persistent: the

Hidden Pointers. Software – Practiceand Experience, 23(12):1285–1303,De-

cember1993.

[BDS
�

92] P. A. Buhr, Glen Ditch�eld, R. A. Stroobosscher, B. M. Younger, and

C. R. Zarnke. µC++: Concurrency in the Object-Oriented Language C++.

Software—PracticeandExperience, 22(2):137–172,February 1992.

[BDZ89] P. A. Buhr, Glen Ditch�eld, and C. R. Zarnke. Basic Abstractions for a

Database Programming Language. In Richard Hull, Ron Morrison, and

David Stemple, editors, DatabaseProgrammingLanguages,2nd International

Workshop, pages422–437.Mor gan Kaufmann, June1989.

[BFC95] PeterA. Buhr, Michel Fortier, and Michael H. Cof�n. Monitor Classi�cation.

ACM ComputingSurveys, 27(1):63–107,March 1995.

BIBLIOGRAPHY 233

[BGNR96a] Peter A. Buhr, Anil K. Goel, Naomi Nishimura, and Prabhakar Ragde.

µDatabase: Parallelism in a Memory-Mapped Environment. To appear in

the Proceedingsof the ACM Symposium on Parallel Algorithms and Ar chi-

tectures,1996.

[BGNR96b] Peter A. Buhr, Anil K. Goel, Naomi Nishimura, and Prabhakar Ragde.

Parallel Pointer-BasedJoin Algorithms in Memory Mapped Environments.

In Proceedingsof the 12th IEEE InternationalConferenceon Data Engineering,

pages266–275,New Orleans, USA, February 1996.IEEE Computer Society

Press.

[BGW92] Peter A. Buhr, Anil K. Goel, and Anderson Wai. µDatabase : A Toolkit

for Constructing Memory Mapped Databases.In Antonio Albano and Ron

Morrison, editors, PersistentObject Systems, pages 166–185,San Miniato,

Italy, September1992.Springer-Verlag. Workshops in Computing, Ed. by

ProfessorC. J.van Rijsbergen, QA76.9.D3I59.

[BK91] N. S. Barghouti and G. E. Kaiser. Concurrency Control in Advanced

DatabaseApplications. ACM ComputingSurveys, 23(3):269–317,September

1991.

[BKSS90] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R
�

-Tree: An

Ef�cient and Robust AccessMethod for Points and Rectangles. In ACM

SIGMOD, pages322–331,1990.

[BOS91] P. Butterworth, A. Otis, and J. Stein. The GemStone Object Database

Management System. Communicationsof the ACM, SpecialSectionon Next-

GenerationDatabaseSystems, 34(10):64,October 1991.

[Bro89] A. L. Brown. PersistentObjectStores. PhD thesis, Universities of Glasgow

and St.Andr ews, Scotland,1989.PPRR–71.

[BS90] PeterA. Buhr and Richard A. Stroobosscher. The µSystem:Providing Light-

Weight Concurrency on Shared-Memory Multipr ocessorComputers Run-

ning UNIX. Software—Practiceand Experience, 20(9):929–963,September

1990.

[BU77] Rudolf Bayer and Karl Unterauer. Pre�x B-Trees. ACM Transactionson

DatabaseSystems, 2(1):11–26,March 1977.

234 BIBLIOGRAPHY

[BZ86] P. A. Buhr and C. R. Zarnke. A Design for Integration of Files into a

Strongly Typed Programming Language. In ProceedingsIEEEComputerSoci-

ety 1986InternationalConferenceon ComputerLanguages, pages190–200,Mi-

ami, Florida, U.S.A, October 1986.

[BZ88] P. A. Buhr and C. R. Zarnke. Nesting in an Object Oriented Language is

NOT for the Birds. In S. Gjessing and K. Nygaard, editors, Proceedingsof

theEuropeanConferenceon ObjectOrientedProgramming, volume 322,pages

128–145,Oslo, Norway , August 1988.Springer-Verlag. Lecture Notes in

Computer Science,Ed. by G. Goosand J.Hartmanis.

[BZ89] P. A. Buhr and C. R. Zarnke. Addr essing in a Persistent Environment. In

John Rosenburg and David Koch, editors, PersistentObjectSystems, pages

200–217,Newcastle, New South Wales, Australia, January 1989.Springer-

Verlag. Workshops in Computing, Ed. by Professor C. J. van Rijsbergen,

QA76.64.I57.

[CAC
�

84] W. P. Cockshott, M. P. Atkinson, K. J.Chisholm, P. J.Bailey, and R.Morrison.

Persistent Object Management System. Software – Practiceand Experience,

14(1):49–71,1984.

[CD85] Hong-Tai Chou and David J. DeWitt. An Evaluation of Buffer Manage-

ment Strategiesfor Relational DatabaseSystems. In A. Pirotte and Y. Vas-

siliou, editors, Proceedingsof the 11th International Conferenceon Very Large

DataBases, pages127–141,Stockholm, August 1985.

[CFL93] Jeff Chase,Mike Feeley, and Hank Levy. Some Issues for Single Addr ess

SpaceSystem. IEEE Workshopon WorkstationOperating Systems, October

1993.

[CFW90] GeorgeCopeland, Michael Franklin, and Gerhard Weikum. Uniform Object

Management. In Advancesin DatabaseTechnology– Proc.EuropeanConference

onDatabaseTechnology, pages253–268,Venice,Italy, March 1990.

[Cha78] M. F. Challis. DatabaseConsistency and Integrity in a Multi-user Environ-

ment. In B. Schneiderman,editor, Databases:ImprovingUsability andRespon-

siveness, pages245–270.Academic Press,1978.

BIBLIOGRAPHY 235

[CLBHL92] Jeff Chase,Hank Levy, Miche Baker-Harvey, and Ed Lazowska. Opal: A

Single Addr essSpaceSystem for 64-bit Ar chitectures. IEEE Workshopon

WorkstationOperatingSystems, April 1992.

[CLFL94] Jeffrey S.Chase,Hank M. Levy, Michael J.Feeley, and Edward D. Lazowska.

Sharing and Protection in a Single Addr essSpaceOperating System. ACM

TransactionsonComputerSystems, 12(4):271–307,May 1994.

[CLV91] Neil Coburn, Per-Ake Larson, and Surendra K. Verma. A Query Processing

Ar chitecture for Share-Memory Multipr ocessors. Technical Report CS-91-

48,University of Waterloo, Waterloo, Ontario, Canada,1991.

[CM88] A. Chang and M. Mergen. 801 Storage: Ar chitecture and Programming.

ACM TransactionsonComputerSystems, 6(1):28–50,January 1988.

[Coc85] W. P. Cockshott. Addr essingMechanisms and PersistentProgramming. In

Workshopon PersistentObjectSystems:their design,implementationand use,

volume PPRR16, pages369–389,Appin, Scotland, August 1985.Universi-

ties of Glasgow and St.Andr ews, Scotland.

[CRJ87] R. Campbell, V. Russo, and G. Johnston. The Design of a Multipr ocessor

Operating System.Proceedingsof theUSENIX C++ Workshop, pages109–125,

November 1987.

[D
�

91] O. Deux et al. The O2 System. Communicationsof the ACM, 34(10):34–49,

October 1991.

[DAG93] S. Dar, R. Agrawal, and N. H. Gehani. The O++ databaseprogramming

language: implementation and experience. In Proc.IEEE InternationalCon-

ferenceonDataEngineering, pages61–70,Vienna, Austria, 1993.

[DC90] Partha Dasgupta and Raymond C. Chen. Memory Semantics in Large

Grained Persistent Objects. ImplementingPersistentObjectBases:Principles

and Practice,Proceedings of the Fourth International Workshop on Persis-

tent Object Systems,pages226–238,September1990.

[DdBF
�

94] Alan Dearle, Rex di Bona, JamesFarrow, Frans Henskens, Andr es Lind-

strom, John Rosenberg, and Francis Vaughan. Grasshopper: An Orthogo-

nally PersistentOperating System. ComputingSystems, 7(3),1994.

236 BIBLIOGRAPHY

[Den70] P. J. Denning. Virtual Memory. ACM Computing Surveys, 2(3):153–189,

September1970.

[DLA87] P. Dasgupta, R. J.LeBlanc, Jr., and W. F. Appelbe. The Clouds Distributed

Operating System: Functional Descriptions, Implementation Details and

Related Work. Technical Report GIT-ICS-87/42, Schoolof Information and

Computer Science,Georgia Institute of Technology, 1987.

[DRH
�

92] Alan Dearle, JohnRosenberg, FransHenskens,FrancisVaughan, and Kevin

Maciunas. An Examiniation of Operating System Support for Persistent

Object Systems. In Proceedingsof the25th Hawaii InternationalConferenceon

SystemSciences, volume 1, pages 779–789,Hawaii, USA, 1992.IEEE Com-

puter SocietyPress.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. TheAnnotatedC++ ReferenceMan-

ual. Addison Wesley, �rst edition, 1990.

[FMP
�

95] Michael J.Feeley, William E. Mor gan, Frederic H. Pighin, Anna R. Karlin,

Henry M. Levy, , and Chandramohan A. Thekkath. Implementing Global

Memory Management in a Workstation Cluster. Proceedingsofthe15thACM

SymposiumonOperatingSystemsPrinciples, December1995.

[FON90] Mary Fontana, LaMott Oren, and Martin Neath. A Portable Implementa-

tion of ParameterizedTemplatesUsing A SophisticatedC++ Macro Facility.

In Proceedingsof theC++ at Work1990Conference, NJ, USA, September1990.

[FW78] StevenFortune and JamesWyllie. Parallelism in Random AccessMachines.

In ACM STOC, pages114–118,1978.

[GADV92] Olivier Gruber, Laurent Amsaleg, Laurent Dayn �es, and Patrick Valduriez.

Support for PersistentObjects:Two Ar chitectures. In Proceedingsof the25th

Hawaii InternationalConferenceonSystemSciences, volume 1, pages757–768,

Hawaii, USA, 1992.IEEEComputer SocietyPress.

[GBY91] G. H. Gonnet and R. Baeza-Yates. Handbookof Algorithms and Data Struc-

tures. Addison-W esley, 1991.

[GM86] Gaston H. Gonnet and J. Ian Munr o. Heaps on Heaps. SIAM Journalon

Computing, 15(4):964–971,November 1986.

BIBLIOGRAPHY 237

[GR83] A. Goldberg and D. Robson. Smalltalk-80:TheLanguageandits Implementa-

tion. Addison-W esley, 1983.

[Gra94] G. Graefe.Sort-Merge-Join:An Idea whose Time has(h)Passed?In IEEEIn-

ternationalConferenceon DataEngineering, page 406,Houston, TX, February

1994.

[Gut84] A. Guttman. R-trees: a dynamic index structure for spatial searching. In

ACM SIGMOD, pages47–57,1984.

[HK81] Jia-Wei Hong and H. T. Kung. I/O Complexity: TheRed-BluePebbleGame.

In ACM STOC, pages326–333,1981.

[IBM81] International BusinessMachines. OS andDOS PL/I ReferenceManual, �rst

edition, September1981.Manual GC26-3977-0.

[ISU
�

95] Shugekazu Inohara, Yoji Shigehata, Keitaro Uehara, Hajime Miyazawa,

Kouhei Yamamoto, and Takashi Masuda. Page-BasedOptimistic Concur-

rency Control for Memory Mapped Persistent Object Systems. In Proceed-

ingsof the28thHawaii InternationalConferenceonSystemSciences, pages645–

654,Hawaii, USA, 1995.IEEEComputer SocietyPress.

[JK77] Norman L. Johnsonand SamuelKotz. Urn Modelsandtheir Application: An

approachto moderndiscreteprobabilitytheory. JohnWiley & Sons,1977.

[KBC
�

88] Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F. Garza, and Darrell Woelk.

Integrating an Object-Oriented Programming Systemwith a DatabaseSys-

tem. Proceedingsof theOOPSLA'88 Conference, pages142–152,October 1988.

[Kol90] Elliot K. Kolodner. Automatic Incremental GarbageCollection and Recov-

ery for a Large Stable Heap. In A. Dearle et al, editor, ImplementingPer-

sistentObjectBases:PrinciplesandPractise,Proceedingsof the Fourth Inter-

national Workshop on Persistent Object Systems” , pages185–198.Mor gan

Kaufmann, 1990.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. TheC ProgrammingLanguage.

Prentice Hall Software Series.Prentice Hall, secondedition, 1988.

238 BIBLIOGRAPHY

[KSU91] Orran Krieger, Michael Stumm, and Ron Unrau. Exploting the Advantages

of Mapped Files for Stream I/O. Proceedingsof theUSENIX C++ Workshop,

June1991.

[KTMo83] M. Kitsur egawa,H. Tanaka,and T. Moto-oka. Application of Hash to Data

BaseMachine and Its Ar chitecture. New GenerationComputing, 1(1):63–74,

1983.

[LAB
�

81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J.Craig Schaf-

fert, Robert Schei�er, and Alan Snyder. CLU ReferenceManual, volume 114

of LectureNotesin ComputerScience. Springer-Verlag, 1981.

[Lar88] P. A. Larson. The Data Model and Query Language of LauRel. Data Engi-

neeringBulletin, (3):23–30,1988.

[LDM93] Daniel F. Lieuwen, David J.DeWitt, and Manish Mehta. Pointer-BasedJoin

Techniques for Object-Oriented Databases. In International Conferenceon

Paralleland Distributed Information Systems, San Diego, CA, USA, January

1993.

[LL82] Henry M. Levy and Peter H. Lipman. Virtual Memory Management in the

VAX/VMS Operating System. IEEEComputer, 15(3):35–41,March 1982.

[LLOW91] C. Lamb, G. Landis, J.Orenstein,and D. Weinreb. The ObjectstoreDatabase

System. Communicationsof theACM, 34(10):50–63,October 1991.

[Lor77] R. A. Lorie. Physical Integrity in a Large SegmentedDatabase.ACM Trans-

actionsonDatabaseSystems, 2(1):91–104,March 1977.

[MC92] Peter W. Madany and Roy H. Campbell. Organizing and Typing Persistent

Objects within an Object-Oriented Framework. In Proceedingsof the 25th

Hawaii InternationalConferenceonSystemSciences, volume 1, pages800–809,

Hawaii, USA, 1992.IEEEComputer SocietyPress.

[MCM
�

94] D. S.Munr o, R. C. H. Connor, E. Morrison, S.Scheuer, and D. W. Stemple.

Concurrent Shadow Paging in the Flask Ar chitecture. In Malcom Atkinson,

David Maier, and Veronique Benzaken, editors, PersistentObjectSystems,

pages16–42,Tarascon,France,September1994.Springer-Verlag.

BIBLIOGRAPHY 239

[MCM
�

95] D. S.Munr o, R.C. H. Connor, R.Morrison, J.E.B.Moss,and S.J.G. Scheuer.

Validating the MaStA I/O Cost Model for DB Crash RecoveryMechanisms.

Proceedingsof the OOPSLA Workshopon Object DatabaseBehaviour, Bench-

marksandPerformance, 1995.

[Mip91] MIPS R4000MicroprocessorUser's Manual. MIPS Computer Systems Inc,

1991.

[ML89] L. Mackert and G. Lohman. Index ScansUsing a Finite LRU Buffer: A

Validated I/O Model. ACM TransactionsonDatabaseSystems, 14(3):401–424,

September1989.

[MLD94] T. P. Martin, P.-A. Larson, and V. Deshpande. Parallel Hash-Based Join

Algorithms for a Shared-Everything Environment. IEEE Transactionson

KnowledgeandDataEngineering, 6(5):750–763,October 1994.

[MM92] Ashok Malhotra and StevenJ.Munr oe. Support for PersistentObjects:Two

Ar chitectures. In Proceedingsof the 25th Hawaii International Conferenceon

SystemSciences, volume 1, pages 737–746,Hawaii, USA, 1992.IEEE Com-

puter SocietyPress.

[Mos90] J. Moss. Working with Persistent Objects: To Swizzle or Not to Swizzle.

Technical Report CS 90-38,CS Department, University of Massachusetts,

May 1990.

[Mun93] D. S.Munr o. On the Integrationof Concurrency, Distribution andPersistence.

PhD thesis,University of St.Andr ews, Scotland, 1993.

[Mun95] Ian Munr o. Private communication with Prof. Ian Munr o, CS Dept., Uni-

versity of Waterloo, 1995.

[Obj93] ObjectStoreUserGuide:DML, ObjectStoreRelease3.0forUNIX Systems. Object

Design, Inc., 25 Burlington Mall Road, Burlington, MA, U. S. A., 01803,

December1993.

[Org72] E. I. Organick. The Multics System. The MIT Press, Cambridge, Mas-

sachusetts,1972.

240 BIBLIOGRAPHY

[PGK88] D. A. Patterson, G. Gibson, and R. H. Katz. A Casefor Redundant Arrays

of Inexpensive Disks(RAID). In ACM SIGMOD, pages109–116,June1988.

[PP88] D. V. Pitts and Dasgupta P. ObjectMemory and StorageManagement in the

CloudsKernel. Proceedingsof the 8th International Conferenceon Distributed

ComputingSystems, pages10–17,June1988.

[PS-87] The PS-Algol ReferenceManual, 4th Ed. Technical Report PPRR12, Uni-

versity of Glasgow and St.Andr ews, Scotland,June1987.

[PSM87] Alan Purdy, Bruce Schuchardt, and David Maier. Integrating an Object

Server with Other Worlds. ACM Transactionson Of�ce InformationSystems,

5(1):27–47,January 1987.

[PU87] Christos Papadimitriou and Jeffrey D. Ullman. A Communication-T ime

Tradeoff. SIAM JournalonComputing, 16(4):639–646,August 1987.

[RC89] Vincent F. Russo and Roy H. Campbell. Virtual Memory and Backing

Storage Management in Multipr ocessorOperating SystemsUsing Object-

Oriented Design Techniques. Technical Report UIUCDCS-R-89-1509,Uni-

versity of Illinois at Urbana-Champaign, Urbana, Illinois, April 1989.

[RCS93] JoelE.Richardson, Michael J.Carey, and Daniel T. Schuh. The Design of the

E Programming Language. ACM TransactionsonProgrammingLanguagesand

Systems, 15(3):494–534,July 1993.

[RD95a] John Rosenberg and Alan Dearle. Distribution and Concurrency in Persis-

tent Systems– Intr oduction to Minitrack. In Proceedingsofthe28thHawaii In-

ternationalConferenceonSystemSciences, pages633–644,Hawaii, USA, 1995.

IEEEComputer SocietyPress.

[RD95b] JohnRosenberg and Alan Dearle, editors. Mintrack onDistribution andCon-

currencyin PersistentSystems,Proceedingsofthe28thHawaii InternationalCon-

ferenceonSystemSciences. IEEEComputer SocietyPress,Hawaii, USA, 1995.

[Req80] Aristides A. G. Requicha. Representationsfor Rigid Solids: Theory, Meth-

ods, and Systems.ACM ComputingSurveys, 12(4):437–464,December1980.

BIBLIOGRAPHY 241

[RHB
�

90] John Rosenberg, Frans Henskens, Fred Brown, Ron Morrison, and David

Munr o. Stability in a Persistent Store Basedon a Large Virtual Memory.

In Proceedingsof theInternationalWorkshopon ComputerArchitecturesto Sup-

portSecurityandPersistenceofInformation, pages229–245,Bremen,WestGer-

many, May 1990.Springer-Verlag.

[RK87] J. Rosenberg and J. Keedy. Object Management and Addr essing in the

MONADS Ar chitecture. Workshopon PersistentObjectSystems:their design,

implementationanduse, pages114–133,August 1987.

[RKA92] J.Rosenberg, J.L. Keedy, and D. A. Abramson. Addr essingMechanisms for

Large Virtual Memories. TheComputerJournal, 35(4):369–375,August 1992.

[RM89] K. Rothermel and C. Mohan. ARIES/NT : A Recovery Method Basedon

Write-Ahead Logging for Nested Transactions. In Proceedingsof the 15th

InternationalConferenceon Very LargeData Bases, pages337–346,Palo Alto,

Ca, August 1989.Mor gan Kaufmann Publishers Inc.

[Ros90] John Rosenberg. The MONADS Ar chitecture: A Layered View. Imple-

menting PersistentObjectBases:Principlesand Practice,Proceedings of the

Fourth International Workshop on Persistent Object Systems, pages 215–

225,September1990.

[SC90] Eugene J. Shekita and Michael J. Carey. A Performance Evaluation of

Pointer-BasedJoins. In ACM SIGMOD, pages 300–311, Atlantic City, NJ,

June1990.

[SD89] Donovan A. Schneider and David J.DeWitt. A Performance Evaluation of

Four Parallel Joins Algorithms in a Shared-Nothing Multipr ocessorEnvi-

ronment. In ACM SIGMOD, pages110–121,June1989.

[Sha81] Mary Shaw, editor. ALPHARD: FormandContent. Springer-Verlag, 1981.

[Sha86] Leonard D. Shapiro. Join Processingin DatabaseSystemswith Large Main

Memories. ACM TransactionsonDatabaseSystems, 11(3):239–264,September

1986.

[Sit92] Richard L. Sites,editor. Alpha Architecture ReferenceManual. Digital Press,

One Burlington Woods Drive, Burlington, MA, U. S.A., 01803,1992.

242 BIBLIOGRAPHY

[SKW92] Vivek Singhal, SheetalV. Kakkad, and Paul R. Wilson. Texas:An Ef�cient,

Portable Persistent Store. In Antonio Albano and Ron Morrison, editors,

PersistentObjectSystems, pages 11–33,San Miniato, Italy, September1992.

Springer-Verlag. Workshops in Computing, Ed. by ProfessorC. J.van Rijs-

bergen, QA76.9.D3I59.

[SL91] Bernhard Seegerand Per-Ake Larson. Multi-Disk B-trees. In ACM SIG-

MOD , pages436–445,Denver, Colorado, USA, June1991.

[Smi85] A. J.Smith. Disk Cache– Miss Ratio Analysis and Design Consideration.

ACM TransactionsonComputerSystems, 3(3):161–203,August 1985.

[SS93] RusselSchaffer and Robert Sedgewick. The Analysis of Heapsort. Journal

of Algorithms, 15:76–100,1993.

[Sto81] M. Stonebraker. Operating systemsupport for databasemanagement. Com-

municationsof theACM, 24(7):412–418,July 1981.

[STP
�

87] Alfr ed Z. Spector, D. Thompson, R. F. Pausch,J.L. Eppinger, D. Duchamp,

R.Draves,D. S.Daniels, and J.L. Bloch. Camelot: A Distributed Transaction

Facility for Mach and the Internet - An Interim Report. Technical Report

CMU-CS-87-129,Carnegie Mellon University , 1987.

[SUK92] M. Stumm, R. Unrau, and O. Krieger. Designing a Scalable Operating

System for Shared Memory Multipr ocessors. USENIX Workshopon Micro-

KernelsandOtherKernelArchitectures, pages285–303,April 1992.

[Sun90] SystemServicesOverview. Sun Micr osystems,1990.

[SW92] Walter R.Smith and Robert V. Welland. A Model for Addr ess-OrientedSoft-

ware and Hardwar e. In Proceedingsof the 25th Hawaii InternationalConfer-

enceon SystemSciences, volume 1, pages720–729,Hawaii, USA, 1992.IEEE

Computer SocietyPress.

[Sym87] SymmetryTechnicalSummary. SequentComputer Systems,Inc., 1987.

[SZ90a] Eugene Shekita and Michael Zwilling. Cricket: A Mapped, Persistent Ob-

ject Store. In A. Dearle et al., editors, ImplementingPersistentObjectBases:

Principlesand Practise,Proceedings of the Fourth International Workshop

on PersistentObject Systems” , pages89–102.Mor gan Kaufmann, 1990.

BIBLIOGRAPHY 243

[SZ90b] M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared

Memory. IEEEComputer, 23(5):54–64,May 1990.

[Tha86] Satish M. Thatte. Persistent Memory: A Storage Ar chitecture for Object-

Oriented Database Systems. In Proceedingsof the International Workshop

on Object-OrientedDatabases, pages 148–159,Pac�c Grove, CA, September

1986.

[TRY
�

87] A. Tevanian, Jr., R. F. Rashid, M. W. Young, D. B. Golub, M. R. Thompson,

W. Bolosky, and R. Sanzi. A Unix Interface for Shared Memory and Mem-

ory Mapped Files Under Mach. In Proceedingsof theSummer1987USENIX

Conference, pages53–67,Phoenix, Arizona, June1987.USENIX Association.

[VD92] Francis Vaughan and Alan Dearle. Supporting Large Persistent Storesus-

ing Conventional Hardwar e. In Antonio Albano and Ron Morrison, edi-

tors, PersistentObjectSystems, pages 34–53,San Miniato, Italy, September

1992.Springer-Verlag. Workshops in Computing, Ed. by ProfessorC. J.van

Rijsbergen, QA76.9.D3I59.

[vdBL89] Janvan den Bos and Chris Laffra. PROCOL: A Parallel Object Language

with Protocols. SIGPLAN Notices, 24(10):95–102,October 1989.Proceedings

of the OOPSLA'89 Conference,Oct. 1–6,1989,New Orleans, Lousiana.

[vDT72] Andries van Dam and Frank Wm. Tompa. Software Data Paging and Seg-

mentation for Complex Systems. Information ProcessingLetters, 1:80–86,

1972.

[vO90] Peter van Oosterom. ReactiveDataStructuresfor GeographicInformationSys-

tems. Ph.D. Thesis,Dept. of CS,Leiden University , December1990.

[VS94a] Jeffrey S. Vitter and Elizabeth A. M. Shriver. Algorithms for Paral-

lel Memory, I: Two-Level Memories. Algorithmica, 12(2/3):110–147,Au-

gust/September 1994.

[VS94b] Jeffrey S.Vitter and Elizabeth A. M. Shriver. Algorithms for Parallel Mem-

ory, II: Hierarchical Multi-Level Memories. Algorithmica, 12(2/3):148–169,

August/September 1994.

244 BIBLIOGRAPHY

[VSWL91] Zvonko G. Vranesic, Michael Stumm, Ron White, and David Lewis. The

Hector Multipr ocessor. Computer, 24(1):x–x,January 1991.

[Wai92] Anderson Wai. StorageManagement Support for Memory Mapping. Mas-

ter 's thesis, Department of Computer Science,University of Waterloo, Wa-

terloo, Ontario, Canada,N2L 3G1,1992.

[WD94] Seth J. White and David J. DeWitt. QuickStore: A High Performance

Mapped Object Store. In ACM SIGMOD, pages395–406,Minneapolis, MN,

U.S.A., May 1994.

[WF90] K.L. Wu and W.K. Fuchs. RecoverableDistributed Shared Virtual Memory.

IEEETransactionsonComputers, 39(4):460–469,April 1990.

[Wil91a] Paul R. Wilson. Pointer Swizzling at PageFault Time: Ef�ciently Support-

ing Huge Addr essSpaceson Standard Hardwar e. ComputerArchitecture

News, 19(4):6–13,June1991.

[Wil91b] Paul R.Wilson. SomeIssuesand Strategiesin Heap Management and Mem-

ory Hierarchies. SIGPLAN Notices, 26(3):45–52,March 1991.

[WZS91] Gerhard Weikum, Peter Zabbak, and Peter Scheuermann. Dynamic File

Allocation in Disk Arrays. In ACM SIGMOD, pages406–415,Denver, Col-

orado, USA, June1991.

Index

accessclass,107
addressspace,81
address-orientedsoftware,45
administrative class,103
administrative object,102
analytical model, seemodelling

B
�

-Tree,seepre�x B
�

-Tree
B-Treeexample, 112
Brown's StableStore,35
Bubba,44–45

Camelot, 49
Choices,50
Clouds, 50
concurrency control, 213–216
concurrent access,70
concurrent retrieval, 69,71
concurrent retrieval algorithm, 74–77
CPOMS,33–35
Cricket, 42

DCC, 135
demand paging, 24
demand segmentation, 24
dirty list, 138
disk arrays (RAIDs), 69,71
disk transfer time, 127
Dynix virtual memory, 136–138

E, 36–37,42
EOS,50
EPD approach, seealso memory map-

ping, 228
persistencemodel, 10–12

exact positioning of data, seeEPD ap-
proach

Exodus storagemanager, 36–37,41–44
expansion baseclass,96
expansion exit, 95
expansion object,95,seealsoheaps

feasibility studies, 140–141,229
freelist, 136

generators,73–74
Grasshopper, 48

heaps,81
expansion object,96
nesting of, 94–98
over�ow control, 95–98

Hector, 51
Hurricane, 51

IBM 801,50
IBM AS/400, 49
IBM RS6000,49
inter-databasepointers, 7, 10
inter-databasepointers, 7–223
inter-segmentpointers, 7

linked list
accessclass,107
example, 99
expansion class,103
�le structure class,104
generator, 107
wrapper , 109

load balancing, 71

245

246 INDEX

Mach, 4
major page fault, 138
MaStA I/O cost model, 124
memory manager classes,82
memory mapping, vii, 3, 23–25

advantagesof, 25–30
disadvantages of, 31
exactpositioning of data, viii, 4–12

memory transfer time, 125,128
memory-r esident databases,3

� C++ 57
� Database, 6

accessors,62–64
basicstructure,57–58
comparison with other work, 65–69
critique of, 64–65
design methodology, 53–65
design objectives,54–57
library , 85
representative,58–62

minor page fault, 138
mmap, 4, 7
model, seemodelling
model validation, viii, 201
modelling, viii, 119,173,229
MONADS, 7, 45
monitor class,86
motivation, 20
Multics, 3, 32

Napier, 35
nestedmemory manager, 114
nestedmemory structure, 83
network graph, 145

O++, 37
object descriptor, 93
ObjectStore, 6, 40–43
Ode/EOS, 37
Opal, 46–47

page dif �ng, 219

page replacement,24
partitioning, 71
performance gain, 154
persistence

allocation-based,36
orthogonal, 32,57

persistent
area,10,57
code,65,223
data, vii, 2
memory, 49
root, 11
storagesystem,4

PID, 33–35
pointer swizzling, 4–6

adhoc, 5
at page fault time, 6, 37–39
eager, 5–6
hybrid, 5, 39
lazy, 5–6

pointer -basedjoin algorithms, 174
grace,195
nested loops, 178
sort merge,185

polymorphism, 78–79
POMS,33–35
pre�x B

�

-Tree,142–143
Procol, 51
PS-Algol, 33–35

query types and parallelism, 72–73
QuickStore, 6, 40,42–44

R-Tree,143–145
R-Treepartitioning algorithms, 160
reachability, 11
recoverablevirtual memory, 49
recovery control, 216–220
related work

modelling, 120–124
databasestudies, 122–124
theoretical models, 120–122

INDEX 247

single-level stores
architectural approaches,44–50
others, 50–51
software approaches,32–44

Rep, 86
RepAccess, 88
RepAdmin, 89,103
representative,84
RepWrapper, 91
residency checks,34,36
resident set,136

SASOS,46–47
segment,81
segmentbaseaddress,86,88
segmentation, viii
shadow paging, 217
single-level store,vii, 2–4

uniform view of data, 2
speedup and scaleup,206
static type safety, 227
storagemanagement,80–83,93

dynamic, 93
uniform, 93
variable, 93

striping, 71
SunOS,4

testbed,135–140,201
Texas,37–39

uDynamic, 99
uExpand, 96
uUniform, 97
uVariable, 99

VAX-11/780, 136
VAX/VMS, 136
virtual function table, 220–223
virtual pointers, 220–223

wrapper class,91
wrappers, 85,91–92

write ahead logging, 219

