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Alan Leung Ondřej Lhoták Ghulam Lashari
D. R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

{acleung,olhotak,glashari}@uwaterloo.ca

ABSTRACT

Accelerated graphics cards, or Graphics Processing Units (GPUs),
have become ubiquitous in recent years. On the right kinds of prob-
lems, GPUs greatly surpass CPUs in terms of raw performance.
However, because they are difficult to program, GPUs are used only
for a narrow class of special-purpose applications; the raw process-
ing power made available by GPUs is unused most of the time.

This paper presents an extension to a Java JIT compiler that exe-
cutes suitable code on the GPU instead of the CPU. Both static and
dynamic features are used to decide whether it is feasible and ben-
eficial to off-load a piece of code on the GPU. The paper presents
a cost model that balances the speedup available from the GPU
against the cost of transferring input and output data between main
memory and GPU memory. The cost model is parameterized so
that it can be applied to different hardware combinations. The pa-
per also presents ways to overcome several obstacles to paralleliza-
tion inherent in the design of the Java bytecode language: unstruc-
tured control flow, the lack of multi-dimensional arrays, the precise
exception semantics, and the proliferation of indirect references.

1. INTRODUCTION
The GPU in a typical desktop PC has significantly more raw pro-

cessing power and memory bandwidth than the CPU. For example,
the NVIDIA GeForce 7800 GTX can perform 165 GFLOPS, while
the theoretical peak rate of a dual-core 3.7 GHz Intel Pentium 965
is 25.6 GFLOPS [29]. The performance gap between GPUs and
CPUs is likely to continue to increase, even as the number of CPU
cores increases. Adding CPU cores requires duplicating control
logic and implementing expensive cache-coherency protocols; in
contrast, increasing the processing power of a GPU-like SIMD unit
requires significantly fewer hardware resources.

However, the processing power provided by the GPU is unused
most of the time, except in very specific applications. In recent
years, a “general-purpose” GPU (GPGPU) community has sprung
up, which applies GPUs to problems other than rendering three-
dimensional scenes [29]. Despite the term “general-purpose”, the
GPGPU community focuses on adapting specific algorithms for ex-
ecution on GPUs.
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The goal of our work is to make available the computational
power of GPUs to people solving numerically-intensive but non-
graphical problems. There is significant commercial interest from
domain experts in financial modelling, oil and gas exploration, and
media processing for cheap computation. Although these people
are experts in their domain, they are often novice programmers,
perhaps having taken one or two programming courses in Java.
In some cases, they have existing prototype implementations in a
high-level language running on the CPU. It is not feasible to require
these domain experts to learn parallel programming, GPU architec-
ture, C++, or template metaprogramming. However, they are will-
ing to follow some conventions in their Java code in exchange for
large speedups. We would like to empower these domain experts to
experiment with tentative solutions without requiring programming
experts to implement their prototypes.

To achieve this, we extend a Java virtual machine (VM) to detect
loops which can be parallelized and which can be executed more
quickly on the GPU than on the CPU. Thus, our solution can cor-
rectly execute any Java bytecode without modification or recom-
pilation. In addition, if the code contains parallelizable loops, the
modified VM will execute them on the GPU when that is prof-
itable. The higher raw performance of the GPU must be weighed
against the cost of transferring the input and output data between
main memory and GPU memory. We propose a parameterized cost
model to weigh these costs and decide when it is beneficial to ex-
ecute code on the GPU. The parameters are used to tune the cost
model to the specific hardware on which the code runs.

We have implemented GPU parallelization in the JikesRVM [6]
Java virtual machine. Like other Java VMs, JikesRVM reads Java
bytecode at run time, translates it to the machine language of the
target CPU, and executes it. Our extension enables the VM to
generate GPU code when appropriate. Unlike some other VMs,
JikesRVM does not include an interpreter: all code is compiled,
first using a fast, simple compiler, and later using more sophisti-
cated compilers for code that turns out to be significant.

The need to perform the transfomation at run time in the virtual
machine is motivated by the dynamic nature of Java, compared to
languages such as Fortran more traditionally used for numeric com-
putation. In Java, most function calls are dynamically dispatched,
and all arrays are dynamically allocated on the heap. Thus, purely
static analyses often fail to determine exactly which code will be
executed and which arrays it will manipulate. Therefore, just-in-
time compilation has become the dominant technique for efficiently
implementing such dynamic languages. Modern just-in-time com-
pilers perform many of the same analyses and optimizations as
static compilers, but can additionally exploit dynamic information
and speculative optimization [20].



Implementing the parallelization inside an existing VM allows
us to take advantage of existing key infrastructure. The adaptive
optimization system [8] determines which methods use significant
amounts of execution time; we focus our parallelization efforts on
only those methods. Within these hot methods, JikesRVM inlines
calls to other methods; thus, our analysis does not need to consider
method calls. We also take advantage of other standard transfor-
mations such as loop-invariant code motion and static single as-
signment form.

The primary back-end we use is the RapidMind framework [4].
RapidMind is a C++ programming framework for expressing data-
dependent parallel algorithms in a hardware-independent way. Our
code generator accesses RapidMind using a Java Native Interface
(JNI) wrapper. RapidMind is designed to generate appropriate code
at run-time for the chosen hardware. Currently, RapidMind can
generate code for GPUs from major vendors, the Cell BE processor,
and multi-core CPUs. So far, we have evaluated the system using
the GPU backend.

This paper makes the following contributions:

• It proposes a new loop parallelization algorithm tailored to
the programming model exposed by common GPU hardware.
The GPU programming model combines some characteris-
tics of both the vector and multi-processor execution models
targetted by traditional parallelization algorithms, but is dis-
tinct from both of these models.

• It identifies obstacles to parallelization that are specific to
Java bytecode, and briefly discusses the solutions that we
have implemented to overcome them. The use of just-in-time
compilation makes it possible to overcome these difficulties
with simple but effective techniques.

• It proposes and evaluates a cost model for deciding whether
it is profitable to run a given loop on the GPU rather than the
CPU. In particular, the cost model balances the data transfer
overhead against the faster computation possible on the GPU.

The rest of the paper is organized as follows. Section 2 provides
background on GPUs and RapidMind. Section 3 presents the GPU
parallelization algorithm. Section 4 discusses obstacles specific to
Java bytecode. Section 5 reports on an experimental evaluation
of the cost model. Section 6 reviews related work, and Section 7
concludes.

2. BACKGROUND

2.1 GPUs
GPU architecture and associated programming models have un-

dergone many changes in recent years, mainly in the direction of
increased generality and programmability. We briefly outline these
developments, and explain the overall programming model at a
high level.

Traditional GPUs were organized as a fixed pipeline of dedicated
stages, which operated in parallel on many data points. The tasks
of the traditional GPU were to map three-dimensional vertices to
two-dimensional positions on the screen, to rasterize the polygons
in the scene onto a bitmap, and to colour each individual pixel of
the bitmap based on lighting and texture information.

Later hardware began to allow custom programs to be executed
in these stages. In particular, the fragment stage (the last stage,
which colours each pixel) was most commonly used for GPGPU
applications because it was one of the first to become programmable,
and because it was the stage with the most raw computational power.

Initially, a fragment program was a short, straight-line sequence of
instructions. Predication was allowed, but no control flow. In a
graphical application, the fragment program would execute once
for each pixel, and its output value would determine the colour of
that pixel. In a GPGPU application, the fragment program could
produce an array of values in parallel, each value begin the out-
put of one instance of the fragment program. Fragment programs
could not write to arbitrary memory locations (scatter), but they
could read from arbitrary locations in so-called textures (i.e. input
arrays in memory). Still later hardware provided increasing lev-
els of support for control flow in fragment programs, implemented
using predication. A common way to overcome the limitations on
control flow and on scatter was to divide the overall algorithm into
multiple fragment programs that could each be run repeatedly.

Modern interfaces to GPUs such as CUDA [3] present a single-
program multiple-data (SPMD) programming model. The GPU ex-
ecutes a large number of threads. Although each thread executes
the same program, it is possible for the individual threads to follow
different control flow paths through the program, and to read from
and write to arbitrary locations in shared memory. Despite the gen-
erality of the programming model, the hardware implementing it is
still composed of single-instruction multiple-data (SIMD) proces-
sors that, at any point in time, execute the same instruction on mul-
tiple pieces of data. Thus maximum performance is achieved when
all of the threads follow the same or similar control flow paths.
Also, the programming model provides no guarantees about the
ordering of parallel writes to the same memory location. Thus, for
predictable results, the programmer must ensure that no two threads
will write to the same location. One way to ensure this is to forego
the ability to perform scatters to arbitrary memory locations, and
assign each thread a distinct set of array elements for its output,
the same technique that was used by fragment programs. Use of
data-dependent scatters requires domain specific knowledge about
the data to guarantee the disjointness of the data-dependent write
targets.

2.2 RapidMind
RapidMind is a C++ GPU metaprogramming framework which

consists of two parts. The front-end is a C++ template library that
provides data types and overloads operators to generate code in the
RapidMind intermediate representation (IR) data structures. The
back-end optimizes the IR and emits code for one of the supported
target architectures (GPU, Cell BE, multi-core CPU). A program-
mer can embed a kernel intended to run on the GPU as a suitably
delimited piece of C++ code directly in the C++ program. Exe-
cuting such a kernel requires two steps. In the first step, the C++
code that the programmer has written is executed on the CPU. At
this stage, no computation is actually performed. Each overloaded
operator, instead of performing a computation, generates the IR in-
struction that would perform the corresponding computation. Thus,
the code that the programmer has written is code that writes the
code that will run on the GPU. Once all the code has run and the
entire IR has been generated, the RapidMind back-end processes
the IR and generates suitable GPU code which can then be exe-
cuted.

In our work, we use only the RapidMind back-end, bypassing
the front-end completely. Thus, no C++ code is generated, no C++
compiler is used, and no template metaprogramming is done. The
parallelization phase in the VM directly generates the RapidMind
IR data structures. These are passed to the RapidMind back-end to
generate the GPU code.

An overview of RapidMind and how the modified JikesRVM
uses it is shown in Figure 1. The right side shows the normal con-
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Figure 1: System Overview

figuration of RapidMind suitable for running C++ code with em-
bedded kernels. The left side shows JikesRVM, which takes Java
bytecode as input and generates machine code that executes on the
CPU. We add the parallelization stage that bridges these two sys-
tems, by generating the RapidMind IR directly from the JikesRVM
IR.

3. GPU PARALLELIZATION ALGORITHM
Our implementation of parallelization proceeds in three stages.

The first stage recovers information about multi-dimensional array
accesses that is lost in Java bytecode. This stage will be discussed
later, in Section 4.2. The second stage performs dependence anal-
ysis on array accesses to construct a dependence graph [41, 38, 5].
For applications we tested, the separability test [41] was sufficient
to disprove dependences. The third stage implements GPU par-
allelization, which generates code that will run on the GPU. We
present this stage in the remainder of this section.

3.1 Classification of Loops
A compiler targeting the GPU must not only identify paralleliz-

able loops, but it must also decide, for each loop, whether to im-
plement it on the CPU, to make the GPU implement it implicitly
by directing it to execute a fragment program once for each itera-
tion of the loop, or to implement it explicitly inside the fragment
program. We illustrate these alternatives using the example in Fig-
ure 2. The code in part (a) of the figure is a sequential program
that multiplies a matrix by a vector 10 times, producing the vec-
tor M10V . A reasonable way to implement this algorithm using
a GPU would be to write the body of the middle loop (with index
x) as a GPU program (as shown in part (b) of the figure), and ask
the GPU to execute the iterations of this loop body in parallel. This
is possible because no dependences are carried by the middle loop.
We call the loop a GPU-Implicit loop because the GPU implicitly
executes its body multiple times when it is asked; the control flow
of the loop does not appear explicitly anywhere in the generated
code. We call the innermost loop (with index y) a GPU-Explicit
loop because it appears explicitly in the GPU program in part (b).
Note that the innermost loop could not have been executed in par-

float[] fix(float[][] A, float[] B) {

float[] Bn = new float[100];

for (int k = 0; k < 10; k++) {

for (int x = 0; x < 100; x++) {

float s = 0;

for (int y = 0; y < 100; y++) {

s += A[x][y] * B[y];

}

Bn[x] = s;

}

float[] tmp = Bn;

Bn = B;

B = tmp;

}

return B;

}

(a)

float kernel(

float x, float[][] A, float[] B) {

float s = 0;

for (float y = 0; y < 100; y++) {

s += A[x][y] * B[y];

}

return s;

}

(b)

Figure 2: Repeated matrix-vector multiplication example in

(a) sequential and (b) GPU code

allel because the variable s has a dependence carried by this loop.
Execution of the GPU program is triggered by code running on the
CPU. Since execution of the GPU program is equivalent to per-
forming all iterations of the x loop in parallel, the CPU code that
should be generate should be as in part (a), but with the x loop re-
placed by a call to trigger the GPU program. The outermost loop
(with index k) remains part of the code implemented on the CPU,
so we call it a CPU loop. Note again that the outermost loop could
not have been parallelized as a GPU-Implicit loop because it carries
the dependence on B.

In the rest of this subsection, we formulate constraints that the
loop classification must satisfy for a correct implementation of the
input program. In the next subsection, we give an algorithm that
computes a solution of the constraints.

The constraints are defined on a loop nesting tree. The root of the
tree represents the whole program as a loop that is iterated exactly
once. In addition, each loop in the program is represented by a tree
node. For each loop, the loops nested directly within it become its
children in the loop nesting tree. Each node in the tree must be
classified as either CPU, GPU-Implicit, or GPU-Explicit.

There are no limitations on the kinds of loops that may be clas-
sified as CPU loops. Thus, a safe (but perhaps inefficient) solution
is to classify all loops as CPU loops.

A GPU-Implicit loop, as the name suggests, is implemented by
directing the GPU to execute a fragment program once for each
iteration of the loop. In order for a loop L to be GPU-Implicit, it
must fulfill the following requirements.



RESTRICTION 1. The parent of L in the nesting tree must be

either CPU or GPU-Implicit.

The outer-most GPU-Implicit loop will be the control change
from CPU to GPU.

RESTRICTION 2. If the parent L′ of L is also GPU-Implicit, L

must be tightly nested within L′ (i.e. L must be the entire body of

L′).

Multiple loops may be implemented implicitly by the GPU, but
only if all of them are tightly nested immediately within one an-
other. Restrictions 1 and 2 ensure that the nesting order of the
loops from outermost to innermost is CPU loops followed by GPU-
Implicit loops followed by GPU-Explicit loops.

RESTRICTION 3. No loop carried true data dependence exists

between instructions of L.

Iterations of L will be the fragment program that the GPU ex-
ecutes implicitly for each fragment. The order of execution is not
necessarily preserved as the GPU executes iterations in parallel.
Restriction 3 enforces that changing the order does not change the
semantics. Anti-dependence between loop iterations, surprisingly,
is allowed. The reason is that before GPU execution begins, all the
array data must be copied into the GPU. The data copying, which
will be discussed further in section 3.3, has the same effect as re-
naming which breaks any anti-dependence. Loop-carried output
data dependences are ruled by the following restriction.

RESTRICTION 4. For each array store A[i1, i2, ...in] inside a

GPU-Implicit loop, the dimension of the store n must equal the

number of GPU-Implicit loops, and the ik must be the induction

variables of the GPU-Implicit loops, in order of nesting, with i1
being the induction variable of the outermost GPU-Implicit loop.

This final and perhaps the most restrictive restriction ensures that
any program in the GPU not have any scatter memory write. Ev-
ery GPU-Implicit iteration will write only to the memory location
associated with that iteration.

Finally, a GPU-Explicit loop is implemented explicitly in the
code of the fragment program. The only requirement is that it must
be nested (not necessarily tightly) inside a GPU-Implicit loop or
other GPU-Explicit loop. However, since a GPU-Explicit is part
of the body of a GPU-Implicit loop, restriction 4 must still hold.
Within the GPU-Explicit loop, there should be no true data depen-
dences carried by any of the GPU-Implicit loops (restriction 3), but
dependences carried by the GPU-Explicit loops are allowed.

3.2 Identifying Loop Types
The algorithm to decide whether each loop should be executed

on the CPU or implicitly or explicitly on the GPU begins by iden-
tifying the index expressions occurring in stores in each loop. It
applies the following definition to each loop.

DEFINITION 1. For a loop L in the loop nesting tree, define

WRITEINDICES(L) as follows:

• If the body of L contains an instruction that cannot be imple-

mented on the GPU, then WRITEINDICES(L) = ⊤.

• Otherwise, if the body of L contains no array writes, then

WRITEINDICES(L) = ⊥.

• Otherwise, if all array writes in the body of L have the same

index vector (i1, . . . , in) and all the ik are induction vari-

ables of distinct loops, then

WRITEINDICES(L) = (i1, . . . , in).

• Otherwise, WRITEINDICES(L) = ⊤.

A loop that cannot be implemented on the GPU because it con-
tains unsuitable instructions or because it writes to arrays using in-
consistent indices will have WRITEINDICES(L) = ⊤. Otherwise,
WRITEINDICES of a loop is the unique index vector used for array
writes in the loop.

Next, the algorithm computes, for each loop, the maximal set of
loops that are tightly nested within it, using the following definition.

DEFINITION 2. For a loop L in the loop nesting tree, define

TNLOOPS(L) as follows.

• If the entire body of L is another loop L′, then

TNLOOPS(L) = TNLOOPS(L′) ∪ {L}.

• Otherwise, TNLOOPS(L) = {L}.

Finally, the algorithm traverses the loop nesting tree searching
for the loop that will become the outer-most GPU-Implicit loop.
When there are multiple possibilities, it is preferable to select the
outermost loop possible to maximize the amount of processing moved
to the GPU. Therefore, the traversal proceeds from the root of the
tree to the leaves, so that it considers outer loops before inner loops.
When considering a given loop, the algorithm checks that the loop
and other loops tightly nested within it cover the induction variables
needed for array stores occurring in the loop, and that the candi-
date loops do not carry dependences. The algorithm considers the
possibility of interchanging the tightly-nested loops. This makes
parallelization possible even if the original nesting order is incon-
sistent with the array store index vector, or extra loops are nested
in between those that define the induction variables used in array
store indices. To determine whether loops can be interchanged, the
algorithm uses the standard technique of identifying interchange-
preventing dependences [41]. Listing 1 shows the overall paral-
lelization algorithm; it is invoked on the root of the loop nesting
tree.

Listing 1 GPU parallelization algorithm

Algorithm PARALLELIZE(loop L):
1: if WRITEINDICES(L) = (i1, . . . , in)

and {i1, . . . , in} ⊆ TNLOOPS(L)
and no dependences are carried by loops i1, . . . , in
and TNLOOPS(L) can be interchanged so the outermost n

loops are i1, . . . , in, in this order then

2: interchange TNLOOPS(L) in this way
3: generate GPU program for body of loop in
4: replace loop i1 with code to execute GPU program
5: else

6: for each child loop L′ of L in the loop nesting tree do

7: PARALLELIZE(L′)

3.3 Data Transfer
Graphics cards have dedicated memory with a very high trans-

fer rate to the graphics processor. However, GPU computations
cannot directly access main memory, and CPU instructions cannot
directly access GPU memory. The speed-up of using the GPU may
be limited by the overhead of copying data between main memory
and GPU memory. This section proposes a cost model to deter-
mine whether executing code on the GPU is beneficial despite the
copying overhead.



The model estimates the time that a loop nest will take to execute
on both the CPU and the GPU (including copying overhead). With
hundreds of models of CPUs and GPUs in use today, no single
formula is suitable for all configurations. Therefore, we propose a
parameterized formula, in which the parameters can be tuned to the
specific target hardware on which the code will execute.

Each of the parameters to the model becomes known at one of
three different stages of compilation: when the JIT compiler is in-
stalled on the machine, when the JIT compiler compiles the loop,
and whenever the compiled code executes the loop. When the JIT
compiler is installed, micro-benchmarks are executed to estimate
the processing power of the CPU and the GPU. These parame-
ters remain constant for all programs. The estimated number of
instructions in the body of the loop becomes known either when
the loop is compiled or when the loop executes (if other loops are
nested within it and their iteration counts depend on runtime val-
ues). Whenever the compiled code prepares to execute the loop,
the number of iterations and the size of the input and output data
become known. At that point, all the parameters are known, and
the compiled code uses the model to decide whether to execute that
instance of the loop on the CPU or the GPU.

Listing 2 Cost estimation

Costcpu = tcpu × insts× Aout.size

Costgpu = tgpu×insts×Aout.size + copy×
P

A∈Ainout
A.size + init

Costcpu estimates the time needed to execute all iterations of
the loop on the CPU. The parameter tcpu is the average time needed
to execute one bytecode instruction as determined by the off-line
micro-benchmarks. We assume that all instructions require the
same amount of time, though a more precise model could divide
instructions into different classes. The parameter insts is the ex-
pected number of instructions to be executed in the body of the
loop. We assume that conditional branches are taken 50% of the
time and that nested loops execute for ten iterations, unless their
iteration count is a known constant. The parameter Aout.size, the
size of the output array, becomes known when the loop is to be ex-
ecuted. The loop will iterate once for each element in the output
array. The estimated cost is the product of these three parameters.

The GPU processing time Costgpu is modelled as a product of
three similar parameters, but two additional terms are added to
model data transfer. The parameter copy estimates the time needed
to copy one floating point number to or from the GPU memory, and
is multiplied by the number of elements in the input and output ar-
rays. If the same array is both read and written, it is counted twice.
The parameter init is a constant term estimating the time needed to
set up the GPU to execute a given shader program.

To determine the fixed parameters of the model (i.e. tcpu, tgpu,
copy, and init), a benchmark is executed on both the CPU and GPU
on a range of test inputs of different sizes and the actual execution
times are recorded. Least squares regression is performed to de-
termine the parameter values that most closely reflect the observed
times.

Experience shows that data transfer occupies a significant por-
tion of the execution time and it is the main source of performance
degradation. Therefore it is highly beneficial to reduce the amount
of data copying between the GPU’s memory and the main memory.
A common pattern in which this is especially important is that of a
loop that repeatedly applies some operation to a single array. For
example, this pattern occurs in the SOR benchmark from the Java
Grande Suite and in stencil applications.

To efficiently handle this common case, we introduce a fourth
kind of loop: Multi-pass loops. Like a CPU loop, a Multi-pass

executes on the CPU, and its body may contain GPU loops. How-
ever, the following restrictions ensure that it is safe to copy the data
to and from the GPU memory only once, rather than every time a
GPU implicit loop executes. Restriction 5 ensures that the Multi-

pass loop is outside all GPU-Implicit loops. Restriction 6 enforces
that any array copied into the GPU is not used outside of the GPU.
Thus, all data transfer for all loops inside the Multi-pass loop can
be done once before the Multi-pass loop begins and after it finishes.

RESTRICTION 5. The parent of the loop must be a CPU Loop

and contain at least one child loop that is GPU-Implicit.

RESTRICTION 6. All array reads or writes to an array A must

strictly reside inside GPU-Implicit children of that loop or strictly

outside of all GPU-Implicit children but not both.

We have adapted the algorithm from listing 1 to find Multi-pass

loops. After the algorithm finishes classifying the original three
loop types, potential Multi-pass loops are identified by examining
the parents of outer most GPU-Implicit loops. Loops satisfying
the above two restrictions are classified as Multi-pass loops. In
our implementation, the introduction of Multi-pass loops shows an
average performance increase of 19.6% for SOR benchmark with
data size of 625 and number of iterations ranging from 1 to 100.

4. JAVA-SPECIFIC ISSUES
The algorithm in Section 3 was generic enough to be applicable

to different programming languages. This section discusses obsta-
cles specific to the choice of Java bytecode as the source language.
As we will see, implementing parallelization in a just-in-time com-
piler makes it possible to use run-time information to effectively
overcome these otherwise difficult obstacles.

4.1 Aliasing
In Java, arrays are always accessed by reference. Lexically dif-

ferent array variables can reference the same array. Aliasing be-
tween arrays introduces dependences not considered in traditional
dependence analysis for languages without aliasing.

The loop below demonstrates the problem. A dependence anal-
ysis that treats A and B as distinct arrays will find no dependence.
However, if A and B reference the same array, S1 has a loop-
carried dependence with itself, so the loop should not be paral-
lelized.

for(int i = 1; i < 100; i++) { // L1

A[i] = B[i - 1]; // S1

}

Static alias analysis is complicated, often imprecise, and dif-
ficult to do efficiently enough to be included in a JIT compiler.
Like [9], our implementation detects aliasing using only runtime
checks. Optimized code that assumes arrays are unaliased is pro-
tected by guards that check this assumption. To minimize the num-
ber of runtime checks, guards are inserted only when array aliasing
would cause a loop carried dependence that prevents paralleliza-
tion.

During the dependence graph creation phase, all array accesses
are considered to be to the same array. However, a dependence
edge caused by different array variables is marked as AliasOnly and
annotated with the pair of array variables that must be aliased for
the dependence to occur. The parallelization algorithm is modified
to parallelize a loop even if it carries dependences, as long as all
of those dependences are marked AliasOnly. When such a loop is



parallelized, the variable pairs corresponding to the dependences
are added to a list of pairs that must be checked for aliasing in the
guard.

4.2 Multidimensional Arrays
Java supports only one-dimensional arrays; multi-dimensional

arrays are simulated as arrays of arrays. Our optimizations must
work on multi-dimensional arrays represented in this way; restrict-
ing them to work only on one-dimensional arrays would severely
limit the programs to which they can be applied. However, in an
array of arrays, subarrays need not be of uniform length, and it is
even possible for subarrays to alias each other. Aliased subarrays
introduce unexpected dependences, since a write to a given loca-
tion also writes to other aliased locations. To preserve behaviour,
the analysis must detect such irregularities and avoid parallelizing
the code when they occur. Fortunately, these irregularities are rare,
so this restriction has little effect on the number of realistic pro-
grams which can be parallelized.

To cheaply and conservatively ensure that parallelized code exe-
cutes only on rectangular arrays of unaliased subarrays, our imple-
mentation adopts the dense flag technique of [26]. An extra one bit
flag is added to the header of every multi-dimensional array. When
the array is created using the multianewarray bytecode instruction,
the flag is set to true. The array returned by this instruction is al-
ways rectangular and its subarrays are unaliased. When executing
any instruction that could cause this property to be violated, such
as overwriting one of the subarrays of the array, the flag is reset to
false. Thus, the parallelized code can take advantage of the invari-
ant that the subarrays of each array are not aliased, that they are
not null, and that they are of uniform length. A guard that tests the
dense flag ensures that, if these conditions could be violated, the
array is processed on the CPU instead.

A related obstacle is that an access into a multi-dimensional ar-
ray, when encoded in Java bytecode, appears as several instructions
each accessing one dimension of the array. The translator must
recover the original index vector from these separate instructions.
This is done using a single pass of the code, which JikesRVM has
already transformed to SSA form. An aload or astore is recog-
nized as an array read or write, respectively. If the unique definition
reaching the base of load/store S1 is also an array load S2, the two
statements are linked together. This is repeated until the definition
reaching the base of the array access is no longer an array access.
The chain of array accesses discovered in this way gives the full
multidimensional array index vector.

4.3 Bounds Checks
Every array access in Java can throw a NullPointerException or

ArrayIndexOutOfBoundsException. According to the Java Lan-
guage Specification, the exceptional control transfer must occur ex-
actly at the time of the access causing the exception, and any side-
effects occurring before it must be preserved. The Java exception
semantics thus impose a control dependence between every pair of
array accesses. To safely parallelize Java code, it is necessary to
ensure that these exceptions cannot occur in the code.

For every loop compiled for the GPU, the implementation also
compiles a fall-back CPU version with the standard exception se-
mantics. Before executing the loop on the GPU, the implementa-
tion performs conservative checks to ensure that all array accesses
will be to non-null arrays and within the array bounds. If any check
fails, the CPU version of the loop is executed instead of the GPU
version. For every array reference accessed in the loop, the imple-
mentation checks that it is non-null and loop-invariant before the
loop. Every array index expression must be either loop-invariant

or of the form ax + b, where x is a loop induction variable and a

and b are loop-invariant. The bounds on an index expression in this
form can be determined from the bounds on x, and compared to the
array size on entry to the loop.

Of course, Java exceptions can also be triggered explicitly using
throw instructions. The implementation does not attempt to execute
a loop on the GPU if the loop contains an explicit throw.

4.4 Recovering Control Flow
Control flow is expressed in Java bytecode in an unstructured

form using goto instructions. Structured control flow (using if-
then-else and while constructs) is required for two reasons: first,
the loop analyses depend on it, and second, shader programming
languages, including the RapidMind intermediate representation,
support only structured control flow. Therefore, the transformation
must recover structure in the control flow.

JikesRVM includes a mechanism to recover loop structure in its
high level intermediate representation HIR. However conditional
branches are left in the form of unstructured branches. After loops
have been identified, each loop can be considered as a single node
in an acyclic control flow graph. The pseudocode shown in List-
ing 3 is used to translate an acyclic control flow graph into struc-
tured control flow using if-then-else statements. The basic idea is
to traverse the control flow graph from the two successors of a con-
ditional branch until a basic block is reached that post-dominates
the condition.

Listing 3 Algorithm for recovering if-then-else structure.

Algorithm GENERATE(BB block, BB condBl):
1: if block = null or (condBl 6= null and block postdominates

condBl) then

2: return empty list
3: ret← GPU code for block
4: if block ends in unconditional branch or falls through then

5: return ret ++ generate(successor of block, condBl)
6: if block ends in conditional branch with condition cond then

7: return ret ++ if cond then GENERATE(branch successor
of block, block) else GENERATE(fall-through successor of
block, block)

5. EMPIRICAL RESULTS
To quantify the performance improvements from executing code

on the GPU and to evaluate the accuracy of the cost model, we
measured the execution time of a set of benchmarks, which were
chosen to vary in the ratio of computation to memory bandwidth
required. The GPU parallelization algorithm was implemented in
JikesRVM 2.9.0. The optimization level of the JikesRVM was set
to -O2 for methods targeted for parallelization. The benchmarking
system contained an Intel Pentium 4 CPU running at 3.0 GHz with
1 GB of memory, and an NVIDIA GeForce 7800 GPU with 256
MB of GPU memory. The machine was running Ubuntu 6.06.1
with Linux kernel version 2.6.15.

The mul benchmark is a simple loop that multiplies a number by
itself n times, repeated for an array of m initial numbers (10 ≤
n ≤ 250, 1000 ≤ m ≤ 20000). The matrix benchmark multiplies
two n by n matrices (10 ≤ n ≤ 320). The julia and mandel
benchmarks compute membership in the Mandelbrot and Julia sets,
respectively, for a set of n by n complex numbers (5 ≤ n ≤ 500),
using up to 250 iterations for each point. The raytrace benchmark
is a ray caster that renders a scene of n by n pixels containing m

spheres (50 ≤ n ≤ 300, 25 ≤ m ≤ 250).
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Figure 3: Comparison of CPU and GPU Execution Times

Figure 3(a) shows the execution times of the matrix benchmark
on the CPU and the GPU. For matrices of 100 by 100 elements and
smaller, the copying overhead dominates GPU execution time, so
the multiplication is faster on the CPU. For larger matrices, how-
ever, the GPU is faster, and the computation time increases much
more slowly as the matrix becomes larger. The mandel and julia
benchmarks exhibit a similar trend, as shown in Figure 3(b).

The benchmark execution times for all the benchmarks are shown
in Figure 4. Each bar represents the total time needed to execute a
benchmark on its full range of test inputs. The times are normalized
to the time required to execute entirely on the CPU, with the GPU
parallelization disabled; this is shown as the left-most bar for each
benchmark. The right-most bar for each benchmark is the smallest
time possible if the implementation made an optimal choice, for
each test input, whether to use the CPU or the GPU. The bars in
between show the execution time when the choice between CPU
and GPU is made according to the model proposed in Section 3.3,
tuned using each of the benchmarks. The second-right-most bar
for each benchmark shows the execution time when the model is
tuned using a combination of all benchmarks except the benchmark
whose execution time is being measured.

The ideal speedup over the CPU ranges from 27% for mul to
13 times for raytrace. When the choice between CPU and GPU is

julia mandel matrix mul raytrace

Figure 5: Overall cost model accuracy

made according to the cost model, the performance improvements
are generally close to the ideal choice regardless of which bench-
mark is used to tune the model. When the model is tuned on all
but the benchmark being measured, execution time using the cost
model is within 4.7% (julia) to 11.5% (raytrace) of the ideal time.

To better understand the accuracy of the cost model, we com-
pared the choices suggested by the model to the ideal choices. The
results of this comparison are depicted in Figure 5, which is to be
interpreted as follows. Each square represents the executions of one
of the benchmarks using a cost model tuned on all but the bench-
mark being measured. The area of each of the squares represents
the full set of test input sizes for the benchmark. The fraction of
each square that is white is the fraction of test inputs for which the
model makes the ideal (“correct”) choice; the black area of each
square represents test inputs for which the model makes the wrong
choice. The area to the left of the vertical line is the proportion of
inputs which can be processed faster on the CPU than the GPU,
while the area to the right represents the inputs on which the GPU
is faster. Thus, for example, the top-left black rectangle in each
square represents the fraction of inputs for which the CPU would
be faster, but the model incorrectly suggested using the GPU.

The mul benchmark executes faster on the CPU than the GPU on
83% of the test inputs, as shown by the square labelled mul; for the
other benchmarks, the GPU is faster more often than the CPU. The
raytrace benchmark always executes faster on the GPU than on the
CPU. Most of the area of each square is white (87% on average),
indicating that the model often makes the correct choice. On the
julia and mul benchmarks, the model is balanced, in that it errs
in both directions: it sometimes suggests using the CPU when the
GPU would be faster, and vice versa. On the mandel benchmark,
in 27% of the cases in which the GPU would be faster, the model
instead suggests using the CPU. However, as Figure 4 shows, the
effect on overall runtime is small, because the cases on which the
model is incorrect are the inputs for which the execution times are
similar on both processors, so an incorrect decision incurs little
performance degradation.

To summarize, we draw the following conclusions from these re-
sults. The potential performance improvement from using the GPU
is very large, up to 13 times for the raytrace benchmark. Because
of this, a large improvement is possible even when the cost model
is tuned on only a single benchmark. When the cost model is tuned
on a variety of benchmarks, it predicts the faster processor for 87%
of the test inputs, achieving total execution times within 4.7% to
11.5% of the ideal time. Although the cost model is simple (for
example, it does not distinguish different instructions), it is suffi-
ciently precise on important cases that it achieves almost the same
overall performance as an ideal cost model.

6. RELATED WORK
Most existing parallelization approaches fall into two categories,

depending on the hardware features that they exploit: task-level
parallelism [30, 14, 33, 10, 7] and vectorization [18, 11, 23, 13, 16,
22, 28, 27, 41, 5, 38].
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Task-level parallelism is supported by multiple instances of a
fully-functional processor. The overhead of creating threads can
be high, but each thread can execute an arbitrary program. Gen-
erally, the outer-most loop is parallelized, resulting in long tasks
and few thread creations. In the context of parallelizing Java, three
examples of this technique are JAVAR [12], JavaSpMT [21], and
SableSpMT [32].

Vectorization, on the other hand, is supported by a SIMD archi-
tecture in which multiple computational units are controlled by a
single control unit, so they execute the same instruction. Although
SIMD instructions are limited to specific types of computations,
they have little overhead, to the point that it is feasible to mix in-
dividual SIMD instructions with sequential computations. As a
result, vectorization generally targets inner-most loops. The vec-
torization or simdization can be categorized into two principal ap-
proaches: the traditional loop-based parallelization [13, 28, 36, 24]
and the basic block approach [23, 19, 35].

The loop-based vectorization technique proceeds by stripmining
the loop by a factor of the vector length and then replacing each
scalar instruction in the loop body by a corresponding vector in-
struction. The basic block approach, on the other hand, unrolls the
loop by a factor of the vector length and packs each group of scalar
isomorphic instructions into a vector instruction. The loop-based
approach requires complicated loop transformations like loop fis-
sion and scalar expansion and is inhibited by loop carried depen-
dences, especially true data dependences shorter than the vector
length. The basic block approach, on the other hand, requires sim-
pler analyses but incurs overhead due to packing and unpacking of
the operands of isomorphic statements. Vectorization in general re-
quires very sophisticated analyses and faces numerous challenges
including control flow [34]. In contrast, our target architecture (the
GPU) requires a simple loop analysis and offers a more flexible
programming model than the traditional SIMD machines.

Current GPUs cannot be decisively categorized as either multi-
processor or vector processors; they share some characteristics of
both. The fragment processor has traditionally been a SIMD pro-
cessor with a limited instruction set. In recent years, hardware for
cyclic control flow has been added, but it is not intended to sup-
port highly divergent control flow. The overhead required to start
a computation makes the GPU more similar to a multi-processor
system. The CUDA [3] architecture moves even further towards a

general multi-processor style of parallelism.
The hybrid nature of GPUs suggests a new kind of parallelization

algorithm targeting loops in the middle of a loop nest; parallelizing
an inner loop would incur high kernel startup overhead, while an
outer loop is likely to contain computations not supported by the
GPU and divergent control flow. We have presented one such al-
gorithm. Another parallelization system targeting GPUs is that of
Cornwall et al. [17], which performs source-to-source translations
to help domain experts retarget an image processing library writ-
ten in C++ to GPUs. ASTEX [1] takes a run-time approach, in
that it searches for hot traces at run time that are amenable to GPU
execution [31].

Zhao et al. [40, 39] have also implemented loop parallelization
in the context of JikesRVM. However, rather than GPUs, their in-
tended target is JAMAICA [2], a multi-processor parallel architec-
ture.

Many languages and systems have been devised to provide a
high-level programming model to allow developers to take advan-
tage of the computing power provided by GPU hardware. The most
closely related ones include CUDA [3], RapidMind [4], Brook [15],
CGiS [25], and Accelerator [37]. In these languages, the program-
mer designates the loop to be executed on the GPU, and writes its
body in a dedicated language. These systems provide more control
over the GPU hardware, but require the programmer to learn the
dedicated language. In our approach, on the other hand, the pro-
grammer writes only Java code, following conventions that allow
the compiler to generate code to run on the GPU.

7. CONCLUSIONS AND FUTURE WORK
This paper has presented a loop parallelization algorithm that

detects loops that can be executed in parallel in the programming
model exposed by modern GPU hardware. In addition, it identified
Java-specific obstacles to parallelization imposed by the semantics
of Java, and suggested simple but effective ways to overcome those
obstacles in the context of a JIT compiler. The paper also proposed
a cost model for deciding whether it is profitable to execute a given
loop on the GPU rather than the CPU. The techniques were imple-
mented in JikesRVM, and empirically evaluated. Specifically, exe-
cuting numerical code on the GPU instead of the CPU was shown
to give speedups of up to 13 times on a ray casting benchmark.
The cost model, when tuned on one benchmark, generalizes well to



other benchmarks. When the cost model is used to choose between
the CPU and the GPU, the resulting performance is very close to
that of the ideal choice.

The GPU parallelization algorithm performs loop interchange
when this is necessary to execute a loop on the GPU. In the future,
we would like to increase the applicability of the parallelizer by
adding some of the many other loop transformation that have been
proposed [41, 5, 38] for uncovering parallelization opportunities.

When the output of a loop is only read in another parallelizable
loop, and both loops are implemented on the GPU, we plan to in-
vestigate whether it is possible to keep the intermediate results on
the GPU, rather than copying them to the CPU and back again.

GPU architecture is changing quickly. The parallelization algo-
rithm presented in this paper can be used as a base, and extended as
necessary to take advantage of new GPU features as they are added.
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